140 resultados para radiation doses

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Catheter ablation procedures for atrial fibrillation (AF) may frequently require long fluoroscopic times. We sought to undertake a review of radiation safety practice in our Cardiac Electrophysiology Laboratory and implement changes to minimize fluoroscopic doses. We also sought to compare the results with radiation doses for percutaneous coronary intervention (PCI) cases performed in our hospital. Methods: Fluoroscopic times and doses for AF ablation procedures performed by a single operator on a Philips Integris H3000 image-intensifier were analysed for 11-month period. Results were compared with all PCI procedures performed over a similar period by multiple operators on a Philips Integris Allura FD system. Comprehensive review of radiation practice in the Electrophysiology laboratory identified the potential to reduce pulse frame rates and doses, and to narrow the field of interest without impacting the performance of the procedure. These changes were implemented and results analysed after a further 11 months. Results: In the pre-intervention period 50 AF catheter ablations had a mean fluoroscopic time of 86.4 min and mean fluoroscopic dose 68.4 Gy/cm2. Post-intervention 75 procedures had a mean fluorosocopic time of 68.9 min (p < 0.0001) and mean dose of 14.3 Gy/cm2 (p < 0.0001) 128 PCI procedures had a mean combined fluoroscopic and image acquisition time of 10.0 min and mean total dose 38.8 Gy/cm2. Conclusions: Catheter ablation procedures for AF may require lengthy use of fluoroscopy but simple modifications to radiation practice can result in marked reductions in radiation dose that compare favourably with PCI case doses

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Radiation safety principles dictate that imaging procedures should minimise the radiation risks involved, without compromising diagnostic performance. This study aims to define a core set of views that maximises clinical information yield for minimum radiation risk. Angiographers would supplement these views as clinically indicated. Methods: An algorithm was developed to combine published data detailing the quality of information derived for the major coronary artery segments through the use of a common set of views in angiography with data relating to the dose–area product and scatter radiation associated with these views. Results: The optimum view set for the left coronary system comprised four views: left anterior oblique (LAO) with cranial (Cr) tilt, shallow right anterior oblique (AP-RAO) with caudal (Ca) tilt, RAO with Ca tilt and AP-RAO with Cr tilt. For the right coronary system three views were identified: LAO with Cr tilt, RAO and AP-RAO with Cr tilt. An alternative left coronary view set including a left lateral achieved minimally superior efficiency (,5%), but with an ,8% higher radiation dose to the patient and 40% higher cardiologist dose. Conclusion: This algorithm identifies a core set of angiographic views that optimises the information yield and minimises radiation risk. This basic data set would be supplemented by additional clinically determined views selected by the angiographer for each case. The decision to use additional views for diagnostic angiography and interventions would be assisted by referencing a table of relative radiation doses for the views being considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radioactive wastes are by-products of the use of radiation technologies. As with many technologies, the wastes are required to be disposed of in a safe manner so as to minimise risk to human health. This study examines the requirements for a hypothetical repository and develops techniques for decision making to permit the establishment of a shallow ground burial facility to receive an inventory of low-level radioactive wastes. Australia’s overall inventory is used as an example. Essential and desirable siting criteria are developed and applied to Australia's Northern Territory resulting in the selection of three candidate sites for laboratory investigations into soil behaviour. The essential quantifiable factors which govern radionuclide migration and ultimately influence radiation doses following facility closure are reviewed. Simplified batch and column procedures were developed to enable laboratory determination of distribution and retardation coefficient values for use in one-dimensional advection-dispersion transport equations. Batch and column experiments were conducted with Australian soils sampled from the three identified candidate sites using a radionuclide representative of the current national low-level radioactive waste inventory. The experimental results are discussed and site soil performance compared. The experimental results are subsequently used to compare the relative radiation health risks between each of the three sites investigated. A recommendation is made as to the preferred site to construct an engineered near-surface burial facility to receive the Australian low-level radioactive waste inventory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study uses dosimetry film measurements and Monte Carlo simulations to investigate the accuracy of type-a (pencil-beam) dose calculations for predicting the radiation doses delivered during stereotactic radiotherapy treatments of the brain. It is shown that when evaluating doses in a water phantom, the type-a algorithm provides dose predictions which are accurate to within clinically relevant criteria, gamma(3%,3mm), but these predictions are nonetheless subtly different from the results of evaluating doses from the same fields using radiochromic film and Monte Carlo simulations. An analysis of a clinical meningioma treatment suggests that when predicting stereotactic radiotherapy doses to the brain, the inaccuracies of the type-a algorithm can be exacerbated by inadequate evaluation of the effects of nearby bone or air, resulting in dose differences of up to 10% for individual fields. The results of this study indicate the possible advantage of using Monte Carlo calculations, as well as measurements with high-spatial resolution media, to verify type-a predictions of dose delivered in cranial treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiosensitizing Effect of Electrochemotherapy in a Fractionated Radiation Regimen in Radiosensitive Murine Sarcoma and Radioresistant Adenocarcinoma Tumor Model. Electrochemotherapy can potentiate the radiosensitizing effect of bleomycin, as shown in our previous studies. To bring this treatment closer to use in clinical practice, we evaluated the interaction between electrochemotherapy with bleomycin and single-dose or fractionated radiation in two murine tumor models with different histology and radiosensitivity. Radiosensitive sarcoma SA-1 and radioresistant adenocarcinoma CaNT subcutaneous tumors grown in A/J and CBA mice, respectively, were used. The anti-tumor effect and skin damage around the treated tumors were evaluated after electrochemotherapy with bleomycin alone or combined with single-dose radiation or a fractionated radiation regimen. The anti-tumor effectiveness of electrochemotherapy was more pronounced in SA-1 than CaNT tumors. In both tumor models, the tumor response to radiation was not significantly influenced by bleomycin alone or by electroporation alone. However, electrochemotherapy before the first tumor irradiation potentiated the response to a single-dose or fractionated radiation regimen in both tumors. For the fractionated radiation regimen, normal skin around the treated tumors was damaged fourfold less than for the single-dose regimen. Electrochemotherapy prior to single-dose irradiation induced more damage to the skin around the treated tumors and greater loss of body weight compared to other irradiated groups, whereas electrochemotherapy combined with the fractionated radiation regimen did not. Electrochemotherapy with low doses of bleomycin can also be used safely for radiosensitization of different types of tumors in a fractionated radiation regimen, resulting in a good anti-tumor effect and no major potentiating effect on radiation-induced skin damage. © 2009 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. Methods: Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. Results: A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. Conclusions: The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3 °S), Brisbane (27.5 °S), Canberra (35.3 °S) and Hobart (42.8 °S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median=1.1, IQR: 0.5–2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r=0.23, p<0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r=0.50) and at high latitudes (Hobart, r=0.50; Canberra, r=0.39), to null or even slightly negative correlations, in summer (r=0.01) and at low latitudes (Townsville, r=-0.06; Brisbane, r=-0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.