184 resultados para quantum double rings
em Queensland University of Technology - ePrints Archive
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
We show that SiGe islands are transformed into nanoholes and rings by annealing treatments only and without Si capping. Rings are produced by a rapid flash heating at temperatures higher than the melting point of Ge, whereas nanoholes are produced by several minute annealing. The rings are markedly rich in Si with respect to the pristine islands, suggesting that the evolution path from islands to rings is driven by the selective dissolution of Ge occurring at high temperature.
Resumo:
In the last years several works have investigated a formal model for Information Retrieval (IR) based on the mathematical formalism underlying quantum theory. These works have mainly exploited geometric and logical–algebraic features of the quantum formalism, for example entanglement, superposition of states, collapse into basis states, lattice relationships. In this poster I present an analogy between a typical IR scenario and the double slit experiment. This experiment exhibits the presence of interference phenomena between events in a quantum system, causing the Kolmogorovian law of total probability to fail. The analogy allows to put forward the routes for the application of quantum probability theory in IR. However, several questions need still to be addressed; they will be the subject of my PhD research
Resumo:
In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.
Resumo:
Few-layer graphene films were grown by chemical vapor deposition and transferred onto n-type crystalline silicon wafers to fabricate graphene/n-silicon Schottky barrier solar cells. In order to increase the power conversion efficiency of such cells the graphene films were doped with nitric acid vapor and an antireflection treatment was implemented to reduce the sunlight reflection on the top of the device. The doping process increased the work function of the graphene film and had a beneficial effect on its conductivity. The deposition of a double antireflection coating led to an external quantum efficiency up to 90% across the visible and near infrared region, the highest ever reported for this type of devices. The combined effect of graphene doping and antireflection treatment allowed to reach a power conversion efficiency of 8.5% exceeding the pristine (undoped and uncoated) device performance by a factor of 4. The optical properties of the antireflection coating were found to be not affected by the exposure to nitric acid vapor and to remain stable over time.
Resumo:
A series of 7 cerium double-decker complexes with various tetrapyrrole ligands including porphyrinates, phthalocyaninates, and 2,3-naphthalocyaninates have been prepared by previously described methodologies and characterized with elemental analysis and a range of spectroscopic methods. The molecular structures of two heteroleptic \[(na)phthalocyaninato](porphyrinato) complexes have also been determined by X-ray diffraction analysis which exhibit a slightly distorted square antiprismatic geometry with two domed ligands. Having a range of tetrapyrrole ligands with very different electronic properties, these compounds have been systematically investigated for the effects of ligands on the valence of the cerium center. On the basis of the spectroscopic (UV−vis, near-IR, IR, and Raman), electrochemical, and structural data of these compounds and compared with those of the other rare earth(III) counterparts reported earlier, it has been found that the cerium center adopts an intermediate valence in these complexes. It assumes a virtually trivalent state in cerium bis(tetra-tert-butylnaphthalocyaninate) as a result of the two electron rich naphthalocyaninato ligands, which facilitate the delocalization of electron from the ligands to the metal center. For the rest of the cerium double-deckers, the cerium center is predominantly tetravalent. The valences (3.59−3.68) have been quantified according to their LIII-edge X-ray absorption near-edge structure (XANES) profiles.
Resumo:
Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.
Resumo:
Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.
Resumo:
Objective - We report the first randomised controlled trial (RCT) using a combination of St. John’s wort (SJW) and Kava for the treatment of major depressive disorder (MDD) with comorbid anxiety. Methods - Twenty-eight adults with MDD and co-occurring anxiety were recruited for a double-blind RCT. After a placebo run-in of 2 weeks, the trial had a crossover design testing SJW and Kava against placebo over two controlled phases, each of 4 weeks. The primary analyses used intention-to-treat and completer analyses. Results - On both intention-to-treat ( p¼0.047) and completer analyses ( p¼0.003), SJW and Kava gave a significantly greater reduction in self-reported depression on the Beck Depression Inventory (BDI-II) over placebo in the first controlled phase. However, in the crossover phase, a replication of those effects in the delayed medication group did not occur. Nor were there significant effects on anxiety or quality of life. Conclusion - There was some evidence of antidepressant effects using SJW and Kava in a small sample with comorbid anxiety. Possible explanations for the absence of anxiolysis may include a potential interaction with SJW, the presence of depression, or an inadequate dose of Kava.
Resumo:
Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.