9 resultados para progetto urbano, green network,scalo San Donato, Bologna.
em Queensland University of Technology - ePrints Archive
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Ecological problems are typically multi faceted and need to be addressed from a scientific and a management perspective. There is a wealth of modelling and simulation software available, each designed to address a particular aspect of the issue of concern. Choosing the appropriate tool, making sense of the disparate outputs, and taking decisions when little or no empirical data is available, are everyday challenges facing the ecologist and environmental manager. Bayesian Networks provide a statistical modelling framework that enables analysis and integration of information in its own right as well as integration of a variety of models addressing different aspects of a common overall problem. There has been increased interest in the use of BNs to model environmental systems and issues of concern. However, the development of more sophisticated BNs, utilising dynamic and object oriented (OO) features, is still at the frontier of ecological research. Such features are particularly appealing in an ecological context, since the underlying facts are often spatial and temporal in nature. This thesis focuses on an integrated BN approach which facilitates OO modelling. Our research devises a new heuristic method, the Iterative Bayesian Network Development Cycle (IBNDC), for the development of BN models within a multi-field and multi-expert context. Expert elicitation is a popular method used to quantify BNs when data is sparse, but expert knowledge is abundant. The resulting BNs need to be substantiated and validated taking this uncertainty into account. Our research demonstrates the application of the IBNDC approach to support these aspects of BN modelling. The complex nature of environmental issues makes them ideal case studies for the proposed integrated approach to modelling. Moreover, they lend themselves to a series of integrated sub-networks describing different scientific components, combining scientific and management perspectives, or pooling similar contributions developed in different locations by different research groups. In southern Africa the two largest free-ranging cheetah (Acinonyx jubatus) populations are in Namibia and Botswana, where the majority of cheetahs are located outside protected areas. Consequently, cheetah conservation in these two countries is focussed primarily on the free-ranging populations as well as the mitigation of conflict between humans and cheetahs. In contrast, in neighbouring South Africa, the majority of cheetahs are found in fenced reserves. Nonetheless, conflict between humans and cheetahs remains an issue here. Conservation effort in South Africa is also focussed on managing the geographically isolated cheetah populations as one large meta-population. Relocation is one option among a suite of tools used to resolve human-cheetah conflict in southern Africa. Successfully relocating captured problem cheetahs, and maintaining a viable free-ranging cheetah population, are two environmental issues in cheetah conservation forming the first case study in this thesis. The second case study involves the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia. L. majuscula is a toxic algal bloom which has severe health, ecological and economic impacts on the community located in the vicinity of this algal bloom. Deception Bay is an important tourist destination with its proximity to Brisbane, Australia’s third largest city. Lyngbya is one of several algae considered to be a Harmful Algal Bloom (HAB). This group of algae includes other widespread blooms such as red tides. The occurrence of Lyngbya blooms is not a local phenomenon, but blooms of this toxic weed occur in coastal waters worldwide. With the increase in frequency and extent of these HAB blooms, it is important to gain a better understanding of the underlying factors contributing to the initiation and sustenance of these blooms. This knowledge will contribute to better management practices and the identification of those management actions which could prevent or diminish the severity of these blooms.
Resumo:
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
An experimental and computational investigation of performance of Green Gully for reusing stormwater
Resumo:
A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.
Resumo:
The next-generation of service-oriented architecture (SOA) needs to scale for flexible service consumption, beyond organizational and application boundaries, into communities, ecosystems and business networks. In wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt and expose services. Those services can then be discovered, ordered, consumed, metered and paid for, through new applications and opportunities, driven by third-parties in the global “village”. This trend is already underway, in different ways, through different early adopter market segments. This paper proposes an architectural strategy for the provisioning and delivery of services in communities, ecosystems and business networks – a Service Delivery Framework (SDF). The SDF is intended to support multiple industries and deployments where a SOA platform is needed for collaborating partners and diverse consumers. Specifically, it is envisaged that the SDF allows providers to publish their services into network directories so that they can be repurposed, traded and consumed, and leveraging network utilities like B2B gateways and cloud hosting. To support these different facets of service delivery, the SDF extends the conventional service provider, service broker and service consumer of the Web Services Architecture to include service gateway, service hoster, service aggregator and service channel maker.
Resumo:
Within the communicative space online Social Network Sites (SNS) afford, Niche Social Networks Sites (NSNS) have emerged around particular geographic, demographic or topic-based communities to provide what broader SNS do not: specified and targeted content for an engaged and interested community. Drawing on a research project developed at the Queensland University of Technology in conjunction with the Australian Smart Services Cooperative Research Centre that produced an NSNS based around Adventure Travel, this paper outlines the main drivers for community creation and sustainability within NSNS. The paper asks what factors motivate users to join and stay with these sites and what, if any, common patterns can be noted in their formation. It also outlines the main barriers to online participation and content creation in NSNS, and the similarities and differences in SNS and NSNS business models. Having built a community of 100 registered members, the staywild.com.au project was a living laboratory, enabling us to document the steps taken in producing a NSNS and cultivating and retaining active contributors. The paper incorporates observational analysis of user-generated content (UGC) and user profile submissions, statistical analysis of site usage, and findings from a survey of our membership pool in noting areas of success and of failure. In drawing on our project in this way we provide a template for future iterations of NSNS initiation and development across various other social settings: not only niche communities, but also the media and advertising with which they engage and interact. Positioned within the context of online user participation and UGC research, our paper concludes with a discussion of the ways in which the tools afforded by NSNS extend earlier understandings of online ‘communities of interest’. It also outlines the relevance of our research to larger questions about the diversity of the social media ecology.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
Research on social network sites has examined how people integrate offline and online life, but with a particular emphasis on their use by friendship groups. We extend earlier work by examining a case in which offline ties are non-existent, but online ties strong. Our case is a study of bodybuilders, who explore their passion with like-minded offline 'strangers' in tightly integrated online communities. We show that the integration of offline and online life supports passion-centric activities, such as bodybuilding.