103 resultados para precipitation variability
em Queensland University of Technology - ePrints Archive
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
Resumo:
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO2) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO2 degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the well head and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180°C is consistently implemented.
Resumo:
Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.
Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture
Resumo:
Variations in interannual rainfall totals can lead to large uncertainties in annual N2O emission budget estimates from short term field studies. The interannual variation in nitrous oxide (N2O) emissions from a subtropical pasture in Queensland, Australia, was examined using continuous measurements of automated chambers over 2 consecutive years. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than soil water content. Over 48% of the total N2O emitted was lost in just 16% of measurement days. Interannual variation in annual N2O estimates was high, with cumulative emissions increasing with decreasing rainfall. Cumulative emissions averaged 1826.7 ± 199.9 g N2O-N ha−1 yr−1 over the two year period, though emissions from 2008 (2148 ± 273 g N2O-N ha−1 yr−1) were 42% higher than 2007 (1504 ± 126 g N2O-N ha−1 yr−1). This increase in annual emissions coincided with almost half of the summer precipitation from 2007 to 2008. Emissions dynamics were chiefly driven by the distribution and size of rain events which varied on a seasonal and annual basis. Sampling frequency effects on cumulative N2O flux estimation were assessed using a jackknife technique to inform future manual sampling campaigns. Test subsets of the daily measured data were generated for the pasture and two adjacent land-uses (rainforest and lychee orchard) by selecting measured flux values at regular time intervals ranging from 1 to 30 days. Errors associated with weekly sampling were up to 34% of the sub-daily mean and were highly biased towards overestimation if strategically sampled following rain events. Sampling time of day also played a critical role. Morning sampling best represented the 24 hour mean in the pasture, whereas sampling at noon proved the most accurate in the shaded rainforest and lychee orchard.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
This work presents an extended Joint Factor Analysis model including explicit modelling of unwanted within-session variability. The goals of the proposed extended JFA model are to improve verification performance with short utterances by compensating for the effects of limited or imbalanced phonetic coverage, and to produce a flexible JFA model that is effective over a wide range of utterance lengths without adjusting model parameters such as retraining session subspaces. Experimental results on the 2006 NIST SRE corpus demonstrate the flexibility of the proposed model by providing competitive results over a wide range of utterance lengths without retraining and also yielding modest improvements in a number of conditions over current state-of-the-art.
Resumo:
The purpose of this study was to verify within- and between-day repeatability and variability in children's oxygen uptake (VO^sub 2^), gross economy (GE; VO^sub 2^ divided by speed) and heart rate (HR) during treadmill walking based on self-selected speed (SS). Fourteen children (10.1 ± 1.4 years) undertook three testing sessions over 2 days in which four walking speeds, including SS were tested. Within- and between-day repeatability were assessed using the Bland and Altman method, and coefficients of variability (CV) were determined for each child across exercise bouts and averaged to obtain a mean group CV value for VO^sub 2^, GE, and HR per speed. Repeated measures analysis of variance showed no statistically significant differences in within- or between-day CV for VO^sub 2^, GE, or HR at any speed. Repeatability within- and between-day for VO^sub 2^, GE, and HR for all speeds was verified. These results suggest that submaximal VO^sub 2^ during treadmill walking is stable and reproducible at a range of speeds based on children's SS.
Resumo:
The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR:0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18%C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that the weather variability and sunspot activity may affect cyanobacterial blooms in dams.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.