40 resultados para pesticide

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, uncomplicated and rapid method of analysis for organophosphorus (OP) pesticides was researched and developed using the important, common OP, dipterex, as a typical example. The basis of the method involved the citrate-capped silver nanoparticles (citrate-capped AgNPs) and Acetylthiocholine (ATCh). The latter compound can be catalyzed by Acetylcholinesterase (AChE) to form thiocholine (TCh), which induces the aggregation of AgNPs. Correspondingly, the color of AgNPs in solution changes from bright yellow to pink, and the UV–vis characteristic absorption peak of AgNPs at about 400 nm decreases; simultaneously, a new absorption band appears at about 520 nm. Irreversible inhibition of AChE activity caused by dipterex, prevents the aggregation of AgNPs. Thus, a UV–vis spectrophotometric method was developed for the analysis of dipterex. The absorbance ratio A396 nm/A520 nm was found to be linearly related to the concentration of dipterex in the range of 0.25–37.5 ng mL−1 with a detection limit of 0.18 ng mL−1. This method was used successfully to analyse dipterex in spiked, different water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of ELISA kits was evaluated as an alternative to monitor bensulfuron-methyl and simetryn behavior in paddy water under intermittent (Plot 1) and continuous (Plot 2) irrigation schemes. Simetryn concentrations in both plots decreased exponentially from the peak of the first day. However, the simetryn kit systematically underestimated by a factor of 0.79 as compared to the GC method. Bensulfuron-methyl concentrations exhibited similar dissipation kinetics in paddy water and the drainage water. The bensulfuron-methyl kit was capable of distinguishing spatial variations of concentrations in the paddy field. The ELISA kits clearly indicated differences in the loss of both herbicides between the two plots and therefore may be useful for evaluating the water management practice of pesticide runoff control in paddy fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation model (PCPF-B) was developed based on the PCPF-1 model to predict the runoff of pesticides from paddy plots to a drainage canal in a paddy block. The block-scale model now comprises three modules: (1) a module for pesticide application, (2) a module for pesticide behavior in paddy fields, and (3) a module for pesticide concentration in the drainage canal. The PCPF-B model was first evaluated by published data in a single plot and then was applied to predict the concentration of bensulfuron-methyl in one paddy block in the Sakura river basin, Ibaraki, Japan, where a detailed field survey was conducted. The PCPF-B model simulated well the behavior of bensulfuron-methyl in individual paddy plots. It also reflected the runoff pattern of bensulfuron-methyl at the block outlet, although overestimation of bensulfuronmethyl concentrations occurred due to uncertainty in water balance estimation. Application of water management practice such as water-holding period and seepage control also affected the performance of the model. A probabilistic approach may be necessary for a comprehensive risk assessment in large-scale paddy areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter provides an overview of the Japanese regulatory issues regarding pesticide use in rice paddies and an introduction of the new pesticide registration program. In addition, the experience of the environmental monitoring of pesticides and the modeling approaches used for the calculation of predicted environmental concentrations (PECs) in surface water and ground water systems adjacent to rice paddies in Japan are also discussed. Japan has been one of the major pesticide users in the world. Although having a long history in rice cultivation, the pesticide exposure assessment for paddy rice production received less attention compared with EU and US. Applications of up-to-date techniques and the development of realistic assessment procedures under specific climatic conditions as well as mitigation management practices for controlling pesticide contamination are important for an environmental-friendly rice production. Through the international cooperation and research exchanges, advances in pesticide risk assessment for rice paddies in Asian region and other rice-growing areas in the world would contribute to sustainable rice production. Transplanting of rice seedlings grows almost all rice paddies in Japan. The land preparation starts around April and June, and the harvest season lasts from August to October depending on the region and the rice varieties. Most of the rice paddies are treated with herbicides and other crop protection products, such as fungicides and insecticides that are applied during the crop season accordingly. Newly developed insecticides and fungicides are also applied during seedbed preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pesticide use in paddy rice production may contribute to adverse ecological effects in surface waters. Risk assessments conducted for regulatory purposes depend on the use of simulation models to determine predicted environment concentrations (PEC) of pesticides. Often tiered approaches are used, in which assessments at lower tiers are based on relatively simple models with conservative scenarios, while those at higher tiers have more realistic representations of physical and biochemical processes. This chapter reviews models commonly used for predicting the environmental fate of pesticides in rice paddies. Theoretical considerations, unique features, and applications are discussed. This review is expected to provide information to guide model selection for pesticide registration, regulation, and mitigation in rice production areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our understanding of how the environment can impact human health has evolved and expanded over the centuries, with concern and interest dating back to ancient times. For example, over 4000 years ago, a civilisation in northern India tried to protect the health of its citizens by constructing and positioning buildings according to strict building laws, by having bathrooms and drains, and by having paved streets with a sewerage system (Rosen 1993). In more recent times, the ‘industrial revolution’ played a dominant role in shaping the modern world, and with it the modern public health system. This era was signified by rapid progress in technology, the growth of transportation and the expansion of the market economy, which lead to the organisation of industry into a factory system. This meant that labour had to be brought to the factories and by the 1820s, poverty and social distress (including overcrowding and infrequent sewage and garbage disposal) was more widespread than ever. These circumstances, therefore, lead to the rise of the ‘sanitary revolution’ and the birth of modern public health (Rosen 1993). The sanitary revolution has also been described as constituting the beginning of the first wave of environmental concern, which continued until after World War 2 when major advances in engineering and chemistry substantially changed the face of industry, particularly the chemical sector. The second wave of environmental concern came in the mid to late 20th century and was dominated by the environmental or ecology movement. A landmark in this era was the 1962 publication of the book Silent Spring by Rachel Carson. This identified for the first time the dramatic effects on the ecosystem of the widespread use of the organochlorine pesticide, DDT. The third wave of environmental concern commenced in the 1980s and continues today. The accelerated rate of economic development, the substantial increase in the world population and the globalisation of trade have dramatically changed the production methods and demand for goods in both developed and developing countries. This has lead to the rise of ‘sustainable development’ as a key driver in environmental planning and economic development (Yassi et al 2001). The protection of health has, therefore, been a hallmark of human history and is the cornerstone of public health practice. This chapter introduces environmental health and how it is managed in Australia, including a discussion of the key generic management tools. A number of significant environmental health issues and how they are specifically managed are then discussed, and the chapter concludes by discussing sustainable development and its links with environmental health.