17 resultados para manganese superoxide dismutase
em Queensland University of Technology - ePrints Archive
Resumo:
The fact that nature provides specific enzymes to selectively remove superoxide (O2.−) from aerobic organisms, namely, the superoxide dismutase enzymes,1 has led to the suggestion that this radical ion may cause the oxidative damage associated with degradative disease and aging.2 Intriguingly, however, superoxide itself is relatively unreactive toward most cellular components, which suggests that dismutase enzymes may ultimately protect the cell against more pernicious oxidants formed from superoxide. As such, there is increasing interest in the endogenous chemistry of superoxide and the pathways by which it might beget more reactive oxygen species. Protonation of superoxide to form the hydroperoxyl radical (HOO.) and dismutation of the same species to hydrogen peroxide (HOOH), with subsequent metal-catalyzed reduction to the hydroxyl radical (HO.), are well-characterized processes in which both the HOO. and HO. radicals are significantly more reactive than their common progenitor.2 Recent examples, however, have also linked superoxide to the putative production of singlet oxygen3 and ozone,4, 5 although the definitive characterization of these chemistries in the cellular milieu has proved challenging
Resumo:
Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.
Resumo:
We examined the influence of 3 consecutive days of high-intensity cycling on blood and urinary markers of oxidative stress. Eight highly-trained male cyclists (VO2 max 76 +/- 4 mL.kg-1.min-1; mean +/- SD) completed an interval session (9 exercise bouts lasting 30 s each, at 150% peak power output) on day 1, followed by 2 laboratory-simulated 30 km time trials on days 2 and 3. The cyclists also completed a submaximal exercise trial matched to the interval session for oxygen consumption. Blood was collected pre- and post-exercise for the determination of malondialdehyde (MDA), total antioxidant status (TAS), vitamin E, and the antioxidant enzyme activity of superoxide dismutase and glutathione peroxidase, while urine was collected for the determination of allantoin. There were significant increases in plasma MDA concentrations (p < 0.01), plasma TAS (p < 0.01), and urinary allantoin excretion (p < 0.01) following the high-intensity interval session on day 1, whereas plasma vitamin E concentration significantly decreased (p = 0.028). Post-exercise changes in plasma MDA (p = 0.036), TAS concentrations (p = 0.039), and urinary allantoin excretion (p = 0.031) were all significantly attenuated over the 3 consecutive days of exercise, whereas resting plasma TAS concentration was elevated. There were no significant changes in plasma MDA, TAS, or allantoin excretion following submaximal exercise and there were no significant changes in antioxidant enzyme activity over consecutive days of exercise or following submaximal exercise. Consecutive days of high-intensity exercise enhanced resting plasma TAS concentration and reduced the post-exercise increase in plasma MDA concentrations.
Resumo:
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Resumo:
OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).
Resumo:
The human lens nucleus is formed in utero, and from birth onwards, there appears to be no significant turnover of intracellular proteins or membrane components. Since, in adults, this region also lacks active enzymes, it offers the opportunity to examine the intrinsic stability of macromolecules under physiological conditions. Fifty seven human lenses, ranging in age from 12 to 82 years, were dissected into nucleus and cortex, and the nuclear lipids analyzed by electrospray ionization tandem mass spectrometry. In the first four decades of life, glycerophospholipids (with the exception of lysophosphatidylethanolamines) declined rapidly, such that by age 40, their content became negligible. In contrast the level of ceramides and dihydroceramides, which were undetectable prior to age 30, increased approximately 100-fold. The concentration of sphingomyelins and dihydrosphingomyelins remained unchanged over the whole life span. As a consequence of this marked alteration in composition, the properties of fiber cell membranes in the centre of young lenses are likely to be very different from those in older lenses. Interestingly, the identification of age 40 years as a time of transition in the lipid composition of the nucleus coincides with previously reported macroscopic changes in lens properties (e.g., a massive age-related increase in lens stiffness) and related pathologies such as presbyopia. The underlying reasons for the dramatic change in the lipid profile of the human lens with age are not known, but are most likely linked to the stability of some membrane lipids in a physiological environment.
Resumo:
Introduction: Training for and competing in ultraendurance exercise events is associated with an improvement in endogenous antioxidant defenses as well as increased oxidative stress. However, consequences on health are currently unclear. Purpose: We aimed to examine the impact of training- and acute exercise-induced changes in the antioxidant capacity on the oxidant/antioxidant balance after an ironman triathlon and whether there are indications for sustained oxidative damage. Methods: Blood samples were taken from 42 well-trained male triathletes 2 d before an ironman triathlon, then immediately postrace, 1, 5, and 19 d later. Blood was analyzed for conjugated dienes (CD), malondialdehyde (MDA), oxidized low-density lipoprotein (oxLDL), oxLDL:LDL ratio, advanced oxidation protein products (AOPP), AOPP:total protein (TP) ratio, Trolox equivalent antioxidant capacity (TEAC), uric acid (UA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in erythrocytes. Results: Immediately postrace, there were significant increases in CD, AOPP, TEAC, UA (for all P < 0.001), and AOPP:TP (P < 0.01). MDA rose significantly (P < 0.01) 1 d postrace, whereas CD (P < 0.01), AOPP (P = 0.01), AOPP:TP (P < 0.05), and TEAC (P < 0.001) remained elevated. OxLDL:LDL trended to increase, whereas oxLDL significantly (P < 0.01) decreased 1 d postrace. Except for GSH-Px (P = 0.08), activities of SOD (P < 0.001) and CAT (P < 0.05) significantly decreased postrace. All oxidative stress markers had returned to prerace values 5 d postrace. Furthermore, several relationships between training status and oxidative stress markers, TEAC, and antioxidant enzyme activities were noted. Conclusions: This study indicates that despite a temporary increase in most (but not all) oxidative stress markers, there is no persistent oxidative stress in response to an ironman triathlon, probably due to training- and exercise-induced protective alterations in the antioxidant defense system.
Resumo:
The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, −OCl) generated by the myeloperoxidase (MPO)–H2O2–Cl− system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79–86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89–99% decreased rate of reduction) and activated human neutrophils (62–75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.
Resumo:
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3•3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793°C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.
Resumo:
The microwave synthesis of MnC2O4·2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H2O4·2H2O) and Mn(OAc)2·4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.
Resumo:
Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.