26 resultados para locking

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article updates a previous article on the Lockwood v Doric fair basing case in the Full Court of the Federal Court which was recently appealed to the High Court. The High Court's decision provides a new and welcome level of clarity in this difficult area of patent law. With this new clarity we can finally lock away some of the mysteries that have plagued the area for some time. Already, indications are that Lockwood's guidelines are being usefully applied in the Patent Office and Federal Court.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible fixation or the so-called ‘biological fixation’ has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone–plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (.3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce multiple-control fuzzy vaults allowing generalised threshold, compartmented and multilevel access structure. The presented schemes enable many useful applications employing multiple users and/or multiple locking sets. Introducing the original single control fuzzy vault of Juels and Sudan we identify several similarities and differences between their vault and secret sharing schemes which influence how best to obtain working generalisations. We design multiple-control fuzzy vaults suggesting applications using biometric credentials as locking and unlocking values. Furthermore we assess the security of our obtained generalisations for insider/ outsider attacks and examine the access-complexity for legitimate vault owners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The preservation of meniscal tissue is important to protect joint surfaces. Purpose We have an aggressive approach to meniscal repair, including repairing tears other than those classically suited to repair. Here we present the medium- to long-term outcome of meniscal repair (inside-out) in elite athletes. Study Design Case series; Level of evidence, 4. Methods Forty-two elite athletes underwent 45 meniscal repairs. All repairs were performed using an arthroscopically assisted inside-out technique. Eighty-three percent of these athletes had ACL reconstruction at the same time. Patients returned a completed questionnaire (including Lysholm and International Knee Documentation Committee [IKDC] scores). Mean follow-up was 8.5 years. Failure was defined by patients developing symptoms of joint line pain and/or locking or swelling requiring repeat arthroscopy and partial meniscectomy. Results The average Lysholm and subjective IKDC scores were 89.6 and 85.4, respectively. Eighty-one percent of patients returned to their main sport and most to a similar level at a mean time of 10.4 months after repair, reflecting the high level of ACL reconstruction in this group. We identified 11 definite failures, 10 medial and 1 lateral meniscus, that required excision; this represents a 24% failure rate. We identified 1 further patient who had possible failed repairs, giving a worst-case failure rate of 26.7% at a mean of 42 months after surgery. However, 7 of these failures were associated with a further injury. Therefore, the atraumatic failure rate was 11%. Age and size and location of the tears were not associated with a higher failure rate. Medial meniscal repairs were significantly more likely to fail than lateral meniscal repairs, with a failure rate of 36.4% and 5.6%, respectively (P < .05). Conclusion Meniscal repair and healing are possible, and most elite athletes can return to their preinjury level of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to study the adsorption of paranitrophenol on mono, di and tri alkyl surfactant intercalated montmorillonite. Organoclays were obtained by the cationic exchange of mono, di and tri alkyl chain surfactants for sodium ions [hexadecyltrimethylammonium bromide (HDTMAB), dimethyldioctadecylammonium bromide (DDOAB), methyltrioctadecylammonium bromide (MTOAB)] in an aqueous solution with Na-montmorillonite. Upon formation of the organoclay, the properties change from strongly hydrophilic to strongly hydrophobic. This change in surface properties is observed by a decrease in intensity of the OH stretching vibrations assigned to water in the cation hydration sphere of the montmorillonite. As the cation is replaced by the surfactant molecules the paranitrophenol replaces the surfactant molecules in the clay interlayer. Bands attributed to CH stretching and bending vibrations change for the surfactant intercalated montmorillonite. Strong changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane surface of the montmorillonite. Such a concept is supported by changes in the SiO stretching bands of the montmorillonite siloxane surface. This study demonstrates that paranitrophenol will penetrate into the untreated clay interlayer and replace the intercalated surfactant in surfactant modified clay, resulting in the change of the arrangement of the intercalated surfactant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.