244 resultados para high yield
em Queensland University of Technology - ePrints Archive
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.
Resumo:
We report here the synthesis, characterization, and organic thin-film transistor (OTFT) mobilities of 4,7-bis(5-(5-hexylthiophen-2-yl)thiophen-2-yl) benzo[1,2,5]thiadiazole (DH-BTZ-4T). DH-BTZ-4T was prepared in one high-yield step from commercially available materials using Suzuki chemistry and purified by column chromatography. OTFTs with hole mobilities of 0.17 cm2/(Vs) and on/off current ratios of 1 × 105 were prepared from DH-BTZ-4T active layers deposited by vacuum deposition. As DH-BTZ-4T is soluble in common solvents, solution processed devices were also prepared by spin coating yielding preliminary mobilities of 6.0 × 10-3 cm 2/(Vs). The promising mobilities and low band gap (1.90 eV) coupled with solution processability and ambient stability makes this material an excellent candidate for application in organic electronics.
Resumo:
BACKGROUND: The use of salivary diagnostics is increasing because of its noninvasiveness, ease of sampling, and the relatively low risk of contracting infectious organisms. Saliva has been used as a biological fluid to identify and validate RNA targets in head and neck cancer patients. The goal of this study was to develop a robust, easy, and cost-effective method for isolating high yields of total RNA from saliva for downstream expression studies. METHODS: Oral whole saliva (200 mu L) was collected from healthy controls (n = 6) and from patients with head and neck cancer (n = 8). The method developed in-house used QIAzol lysis reagent (Qiagen) to extract RNA from saliva (both cell-free supernatants and cell pellets), followed by isopropyl alcohol precipitation, cDNA synthesis, and real-time PCR analyses for the genes encoding beta-actin ("housekeeping" gene) and histatin (a salivary gland-specific gene). RESULTS: The in-house QIAzol lysis reagent produced a high yield of total RNA (0.89 -7.1 mu g) from saliva (cell-free saliva and cell pellet) after DNase treatment. The ratio of the absorbance measured at 260 nm to that at 280 nm ranged from 1.6 to 1.9. The commercial kit produced a 10-fold lower RNA yield. Using our method with the QIAzol lysis reagent, we were also able to isolate RNA from archived saliva samples that had been stored without RNase inhibitors at -80 degrees C for >2 years. CONCLUSIONS: Our in-house QIAzol method is robust, is simple, provides RNA at high yields, and can be implemented to allow saliva transcriptomic studies to be translated into a clinical setting.
Resumo:
Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.
Resumo:
A new method for the direct aryl iodination of isoindolines and isoindoline nitroxides which utilizes periodic acid and potassium iodide in sulfuric acid is presented. Di-iodo functionalized tetramethyl and tetraethyl isoindolines and a di-iodo tetramethyl isoindoline nitroxide were prepared in high yield (70-82%). The analogous mono-iodo species were afforded in modest yield (34-48%). Iodinated nitrones were also obtained from a tetraethyl isoindoline nitroxide.
Resumo:
The methoxyamine group represents an ideal protecting group for the nitroxide moiety. It can be easily and selectively introduced in high yield (typically >90%) to a range of functionalised nitroxides using FeSO4.7H2O and H2O2 in DMSO. Its removal is readily achieved under mild conditions in high yield (70-90%) using mCPBA in a Cope-type elimination process.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp which is suitable for making photocopier paper and tissue products. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 µm c.f. 122 µm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free peroxide bleaching (QPP), although none achieved a satisfactory brightness level and further improvement would be required to produce a bleached pulp.
Resumo:
In this work, nanocrystalline Mg-Al-Nd alloys were fabricated using mechanical alloying method. Phase structure of the extrided rods was examined using X-ray diffraction (XRD) and the microstructures were observed using transmission electronic microscopy (TEM). High yield strength was obtained in the alloys with a high Nd content due to grain refinement and Nd rich precipitate phase.
Resumo:
Unnatural amino acids are a growing class of intermediates required for pharmaceuticals, agrochemicals and other industrial products. However, no single method has proven sufficiently versatile to prepare these compounds broadly at scale. To address this need, we have developed a general chemoenzymatic process to prepare enantiomerically pure L- and D-amino acids in high yield by deracemization of racemic starting materials. This method involves the concerted action of an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of >99% from the starting racemate, and product yields of over 90%. This approach compares very favourably with resolution processes, which have a maximum single-pass yield of 50%. We have developed efficient methods to adapt the process towards new target compounds and to optimize key factors that influence process efficiency and offer competitive economics at scale.
Resumo:
A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.
Resumo:
An innovative approach to fabricate tailored Mo-oxide nanostructures and composite nanoarchitectures using atmospheric microplasmas sustained in a gap between a Mo wire and a Si substrate is reported. It is shown that at smaller gap distances spherical nanoparticles are produced whereas sheet-like structures emerge when the gap is increased. When the wire is consumed continuously, it is possible to synthesize complex nanoarchitectures made of nanoparticles decorated with nanosheets. These processes can be applied for other metal and metal oxide materials and suggest a way to improve control and predictability, common problems in high-yield nanofabrication.