316 resultados para goodness-of-fit

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To undertake rigorous psychometric testing of the newly developed contemporary work environment measure (the Brisbane Practice Environment Measure [B-PEM]) using exploratory factor analysis and confirmatory factor analysis. Methods: Content validity of the 33-item measure was established by a panel of experts. Initial testing involved 195 nursing staff using principal component factor analysis with varimax rotation (orthogonal) and Cronbach's alpha coefficients. Confirmatory factor analysis was conducted using data from a further 983 nursing staff. Results: Principal component factor analysis yielded a four-factor solution with eigenvalues greater than 1 that explained 52.53% of the variance. These factors were then verified using confirmatory factor analysis. Goodness-of-fit indices showed an acceptable fit overall with the full model, explaining 21% to 73% of the variance. Deletion of items took place throughout the evolution of the instrument, resulting in a 26-item, four-factor measure called the Brisbane Practice Environment Measure-Tested. Conclusions: The B-PEM has undergone rigorous psychometric testing, providing evidence of internal consistency and goodness-of-fit indices within acceptable ranges. The measure can be utilised as a subscale or total score reflective of a contemporary nursing work environment. Clinical Relevance: An up-to-date instrument to measure practice environment may be useful for nursing leaders to monitor the workplace and to assist in identifying areas for improvement, facilitating greater job satisfaction and retention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To examine the psychometric properties of a Chinese version of the Problem Areas In Diabetes (PAID-C) scale. RESEARCH DESIGN AND METHODS The reliability and validity of the PAID-C were evaluated in a convenience sample of 205 outpatients with type 2 diabetes. Confirmatory factor analysis, Bland-Altman analysis, and Spearman's correlations facilitated the psychometric evaluation. RESULTS Confirmatory factor analysis confirmed a one-factor structure of the PAID-C (χ2/df ratio = 1.894, goodness-of-fit index = 0.901, comparative fit index = 0.905, root mean square error of approximation = 0.066). The PAID-C was associated with A1C (rs = 0.15; P < 0.05) and diabetes self-care behaviors in general diet (rs = −0.17; P < 0.05) and exercise (rs = −0.17; P < 0.05). The 4-week test-retest reliability demonstrated satisfactory stability (rs = 0.83; P < 0.01). CONCLUSIONS The PAID-C is a reliable and valid measure to determine diabetes-related emotional distress in Chinese people with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engagement is believed to be critical to a successful first year experience. This paper examines a range of strategies introduced into a first year Social Work and Human Services unit at Queensland University of Technology. The focus of these strategies was to enhance student engagement through building connections with peers, lecturers and the Social Work and Human Services professions. It is argued in this paper that students are more likely to continue with their studies if they are supported in building an emerging identity as both a university student and as a Social Work or Human Services practitioner. A range of strategies was introduced, including restructuring the unit to include an early intensive teaching block; inviting current practitioners to speak with students about the realities of practice; and embedding an academic skills component into the unit. Feedback from students highlighted the success of these strategies in developing their academic skills, building connections and embedding a sense of fit with the profession.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to undertake rigorous psychometric testing of the Caring Efficacy Scale in a sample of Registered Nurses. A cross-sectional survey of 2000 registered nurses was undertaken. The Caring Efficacy Scale was utilised to inform the psychometric properties of the selected items of the Caring Efficacy Scale. Cronbach’s Alpha identified reliability of the data. Exploratory Factor Analysis and Confirmatory Factor Analysis were undertaken to validate the factors. Confirmatory factor analysis confirmed the development of two factors; Confidence to Care and Doubts and Concerns. The Caring Efficacy Scale has undergone rigorous psychometric testing, affording evidence of internal consistency and goodness-of-fit indices within satisfactory ranges. The Caring Efficacy Scale is valid for use in an Australian population of registered nurses. The scale can be used as a subscale or total score reflective of self-efficacy in nursing. This scale may assist nursing educators to predict levels of caring efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The application of theoretical frameworks for modeling predictors of drug risk among male street laborers remains limited. The objective of this study was to test a modified version of the IMB (Information-Motivation-Behavioral Skills Model), which includes psychosocial stress, and compare this modified version with the original IMB model in terms of goodness-of-fit to predict risky drug use behavior among this population. Methods In a cross-sectional study, social mapping technique was conducted to recruit 450 male street laborers from 135 street venues across 13 districts of Hanoi city, Vietnam, for face-to-face interviews. Structural equation modeling (SEM) was used to analyze data from interviews. Results Overall measures of fit via SEM indicated that the original IMB model provided a better fit to the data than the modified version. Although the former model was able to predict a lesser variance than the latter (55% vs. 62%), it was of better fit. The findings suggest that men who are better informed and motivated for HIV prevention are more likely to report higher behavioral skills, which, in turn, are less likely to be engaged in risky drug use behavior. Conclusions This was the first application of the modified IMB model for drug use in men who were unskilled, unregistered laborers in urban settings. An AIDS prevention program for these men should not only distribute information and enhance motivations for HIV prevention, but consider interventions that could improve self-efficacy for preventing HIV infection. Future public health research and action may also consider broader factors such as structural social capital and social policy to alter the conditions that drive risky drug use among these men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The overuse of antibiotics is becoming an increasing concern. Antibiotic resistance, which increases both the burden of disease, and the cost of health services, is perhaps the most profound impact of antibiotics overuse. Attempts have been made to develop instruments to measure the psychosocial constructs underlying antibiotics use, however, none of these instruments have undergone thorough psychometric validation. This study evaluates the psychometric properties of the Parental Perceptions on Antibiotics (PAPA) scales. The PAPA scales attempt to measure the factors influencing parental use of antibiotics in children. Methods: 1111 parents of children younger than 12 years old were recruited from primary schools’ parental meetings in the Eastern Province of Saudi Arabia from September 2012 to January 2013. The structure of the PAPA instrument was validated using Confirmatory Factor Analysis (CFA) with measurement model fit evaluated using the raw and scaled χ2, Goodness of Fit Index, and Root Mean Square Error of Approximation. Results: A five-factor model was confirmed with the model showing good fit. Constructs in the model include: Knowledge and Beliefs, Behaviors, Sources of information, Adherence, and Awareness about antibiotics resistance. The instrument was shown to have good internal consistency, and good discriminant and convergent validity. Conclusion: The availability of an instrument able to measure the psychosocial factors underlying antibiotics usage allows the risk factors underlying antibiotic use and overuse to now be investigated.