117 resultados para glomerulus basement membrane
em Queensland University of Technology - ePrints Archive
Resumo:
In vitro analyses of basement membrane invasiveness employing Matrigel (a murine tumor extract rich in basement membrane components) have been performed on human breast cancer model systems. Constitutive invasiveness of different human breast cancer (HBC) cell lines has been examined as well as regulation by steroid hormones, growth factors, and oncogenes. Carcinoma cells exhibiting a mesenchymal-like phenotype (vimentin expression, lack of cell border associated uvomorulin) show dramatically increased motility, invasiveness, and metastatic potential in nude mice. These findings support the hypothesis that epithelial to mesenchymal transition (EMT)-like events may be instrumental in the metastatic progression of human breast cancer. The MCF-7 subline MCF-7ADR appears to have undergone such a transition. The importance of such a transition may be reflected in the emergence of vimentin expression as an indicator of poor prognosis in HBC. Matrix degradation and laminin recognition are highlighted as potential targets for antimetastatic therapy, and analyses of laminin attachment and the matrix metalloproteinase (MMP) family in HBC cell lines are summarized. Matrigel-based assays have proved useful in the study of the molecular mechanisms of basement membrane invasiveness, their regulation in HBC cells, and their potential as targets for antimetastatic therapy.
Resumo:
Expression of the intermediate filament protein vimentin, and loss of the cellular adhesion protein uvomorulin (E-cadherin) have been associated with increased invasiveness of established human breast cancer cell lines in vitro and in vivo. In the current study, we have further examined these relationships in oncogenically transformed human mammary epithelial cells. A normal human mammary epithelial strain, termed 184, was previously immortalized with benzo[a]pyrene, and two distinct sublines were derived (A1N4 and 184B5). These sublines were infected with retroviral vectors containing a single or two oncogenes of the nuclear, cytoplasmic, and plasma membrane-associated type (v-rasH, v-rasKi, v -mos, SV40T and c -myc). All infectants have been previously shown to exhibit some aspects of phenotypic transformation. In the current study, cellular invasiveness was determined in vitro using Matrigel, a reconstituted basement membrane extract. Lineage-specific differences were observed with respect to low constitutive invasiveness and invasive changes after infection with ras, despite similar ras-induced transformation of each line. Major effects on cellular invasiveness were observed after infection of the cells with two different oncogenes (v-rasH + SV40T and v -rasH + v -mos). In contrast, the effects of single oncogenes were only modest or negligible. All oncogenic infectants demonstrated increased attachment to laminin, but altered secretion of the 72 kDa and 92 kDa gelatinases was not associated with any aspect of malignant progression. Each of the two highly invasive double oncogene transformants were vimentinpositive and uvomorulin-negative, a phenotype indicative of the epithelial-mesenchymal transition (EMT) previously associated with invasiveness of established human breast cancer cell lines. Weakly invasive untransformed mammary epithelial cells in this study were positive for both vimentin and uvomorulin, suggesting that uvomorulin may over-ride the otherwise vimentin-associated invasiveness.
Resumo:
Background/Aims Biological and synthetic scaffolds play important roles in tissue engineering and are being developed towards human clinical applications. Based on previous work from our laboratory, we propose that extracellular matrices from skeletal muscle could be developed for adipose tissue engineering. Methods Extracellular matrices (Myogels) extracted from skeletal muscle of various species were assessed using biochemical assays including ELISA and Western blotting. Biofunctionality was assessed using an in vitro differentiation assay and a tissue engineering construct model in the rat. Results Myogels were successfully extracted from mice, rats, pigs and humans. Myogels contained significant levels of laminin α4- and α2-subunits and collagen I compared to Matrigel™, which contains laminin 1 (α1β1γ1) and collagen IV. Levels of growth factors such as fibroblast growth factor 2 were significantly higher than Matrigel, vascular endothelial growth factor-A levels were significantly lower and all other growth factors were comparable. Myogels reproducibly stimulated adipogenic differentiation of preadipocytes in vitro and the growth of adipose tissue in the rat. Conclusions We found Myogel induces adipocyte differentiation in vitroand shows strong adipogenic potential in vivo, inducing the growth of well-vascularised adipose tissue. Myogel offers an alternative for current support scaffolds in adipose tissue engineering, allowing the scaling up of animal models towards clinical adipose tissue engineering applications.
Resumo:
Basement membranes serve as significant barriers to the passage of tumor cells but ones which metastatic cells can pass. This involves the production of a cascade of proteases leading to the activation of a specific collagenase that degrades the unique collagen network in basement membrane. Breast cancer cells, when estrogen dependent, show a requirement for estrogen for invasive activity. However, when these cells progress to an estrogen independent state and increased malignancy, they express an invasive phenotype constitutively. Studies with various anti-estrogens suggest that these responses are mediated via the estrogen receptor. Anti-estrogens lacking agonist activity suppress invasiveness as well as growth of the breast cancer cells.
Resumo:
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/ VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.
Resumo:
The current understanding of the regulation of breast cancer cell proliferation and invasiveness by hormones and growth factors is reviewed. It has been shown that polypeptide growth factors are involved in hormone-independent breast cancer, and are sometimes oestrogen-regulated in hormone-responsive models. Basement-membrane invasiveness, relating to the metastatic potential of these cells, is also stimulated by oestrogen in hormone-dependent models, elevated in hormone-independent models, and is growth factor sensitive. Further understanding of the differential effects of growth factors on breast cancer cell proliferation and invasiveness should facilitate better therapeutic exploitation of regulation at this level.
Resumo:
The isolation of islets by collagenase digestion can cause damage and impact the efficiency of islet engraftment and function. In this study, we assessed the basement membranes (BMs) of mouse pancreatic islets as a molecular biomarker for islet integrity, damage after isolation, and islet repair in vitro as well as in the absence or presence of an immune response after transplantation. Immunofluorescence staining of BM matrix proteins and the endothelial cell marker platelet endothelial cell adhesion molecule-1 (PECAM-1) was performed on pancreatic islets in situ, isolated islets, islets cultured for 4 days, and islet grafts at 3-10 days posttransplantation. Flow cytometry was used to investigate the expression of BM matrix proteins in isolated islet β-cells. The islet BM, consisting of collagen type IV and components of Engelbreth-Holm-Swarm (EHS) tumor laminin 111, laminin α2, nidogen-2, and perlecan in pancreatic islets in situ, was completely lost during islet isolation. It was not reestablished during culture for 4 days. Peri- and intraislet BM restoration was identified after islet isotransplantation and coincided with the migration pattern of PECAM-1(+) vascular endothelial cells (VECs). After islet allotransplantation, the restoration of VEC-derived peri-islet BMs was initiated but did not lead to the formation of the intraislet vasculature. Instead, an abnormally enlarged peri-islet vasculature developed, coinciding with islet allograft rejection. The islet BM is a sensitive biomarker of islet damage resulting from enzymatic isolation and of islet repair after transplantation. After transplantation, remodeling of both peri- and intraislet BMs restores β-cell-matrix attachment, a recognized requirement for β-cell survival, for isografts but not for allografts. Preventing isolation-induced islet BM damage would be expected to preserve the intrinsic barrier function of islet BMs, thereby influencing both the effector mechanisms required for allograft rejection and the antirejection strategies needed for allograft survival.
Resumo:
Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.
Resumo:
Hepatocyte growth factor/scatter factor (HGF/SF) is a protein growth factor whose pleiotropic effects on epithelial cells include the stimulation of motility, mitosis and tubulogenesis. These responses are mediated by the cell surface tyrosine kinase receptor c-met. Because both the cytokine and receptor are found in the gastrointestinal tract, we have studied the effects of HGF/SF on transformed gut epithelial cells which express c-met. Here we describe the response of a new transformed human jejunal epithelioid cell line (HIE-7) to HGF/SF. Morphologically HIE-7 cells are immature. Their epithelial lineage was confirmed by reactivity with the epithelial specific antibodies AE1/AE3, Cam 5.2, Ber-EP4 and anti-EMA and is consistent with their expression of c-met mRNA and protein. In addition, electron microscopic analysis revealed the presence of primitive junctions and rudimentary microvilli, but features of polarization were absent. When grown on reconstituted basement membranes, HIE-7 cells formed closely associated multicellular cord-like structures adjacent to acellular spaces. However, the cells did not mature structurally, form lumen-like structures or express disaccharidase mRNA, even in the presence of recombinant HGF (rHGF). On the other hand, rHGF induced HIE-7 cells to scatter and stimulated their rapid migration in a modified wound assay. To determine whether the motogenic effect caused by rHGF is associated with HIE-7 cell invasiveness across reconstituted basement membranes, a Boyden chamber chemoinvasion assay was performed. rHGF stimulated a 10-fold increase in the number of HIE-7 cells that crossed the basement membrane barrier, while only stimulating a small increase in chemotaxis across a collagen IV matrix, suggesting that the cytokine activates matrix penetration by these cells. rHGF also stimulated the invasion of basement membranes by an undifferentiated rat intestinal cell line (IEC-6) and by two human colon cancer cell lines which are poorly differentiated (DLD-1 and SW 948). In contrast, two moderately well differentiated colon cancer cell lines (Caco-2 and HT-29) did not manifest an invasive response when exposed to rHGF. These results suggest that HGF/SF may play a significant role in the invasive behavior of anaplastic and poorly differentiated gut epithelial tumors.
Resumo:
Invasion of extracellular matrices is crucial to a number of physiological and pathophysiological states, including tumor cell metastasis, arthritis, embryo implantation, wound healing, and early development. To isolate invasion from the additional complexities of these scenarios a number of in vitro invasion assays have been developed over the years. Early studies employed intact tissues, like denuded amniotic membrane (1) or embryonic chick heart fragments (2), however recently, purified matrix components or complex matrix extracts have been used to provide more uniform and often more rapid analyses (for examples, see the following integrin studies). Of course, the more holistic view of invasion offered in the earlier assays is valuable and cannot be fully reproduced in these more rapid assays, but advantages of reproducibility among replicates, ease of preparation and analysis, and overall high throughput favor the newer assays. In this chapter, we will focus on providing detailed protocols for Matrigel-based assays (Matrigel=reconstituted basement membrane; reviewed in ref. (3)). Matrigel is an extract from the transplantable Engelbreth-Holm-Swarm murine sarcoma that deposits a multilammelar basement membrane. Matrigel is available commercially (Becton Dickinson, Bedford, MA), and can be manipulated as a liquid at 4°C into a variety of different formats. Alternatively, cell culture inserts precoated with Matrigel can be purchased for even greater simplicity.
Resumo:
Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.