407 resultados para genetic sequencing

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia. (C) 2000 Lippincott Williams and Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Invasive species pose a significant threat to global economies, agriculture and biodiversity. Despite progress towards understanding the ecological factors associated with plant invasions, limited genomic resources have made it difficult to elucidate the evolutionary and genetic factors responsible for invasiveness. This study presents the first expressed sequence tag (EST) collection for Senecio madagascariensis, a globally invasive plant species. Methods We used pyrosequencing of one normalized and two subtractive libraries, derived from one native and one invasive population, to generate an EST collection. ESTs were assembled into contigs, annotated by BLAST comparison with the NCBI non-redundant protein database and assigned gene ontology (GO) terms from the Plant GO Slim ontologies. Key Results Assembly of the 221 746 sequence reads resulted in 12 442 contigs. Over 50 % (6183) of 12 442 contigs showed significant homology to proteins in the NCBI database, representing approx. 4800 independent transcripts. The molecular transducer GO term was significantly over-represented in the native (South African) subtractive library compared with the invasive (Australian) library. Based on NCBI BLAST hits and literature searches, 40 % of the molecular transducer genes identified in the South African subtractive library are likely to be involved in response to biotic stimuli, such as fungal, bacterial and viral pathogens. Conclusions This EST collection is the first representation of the S. madagascariensis transcriptome and provides an important resource for the discovery of candidate genes associated with plant invasiveness. The over-representation of molecular transducer genes associated with defence responses in the native subtractive library provides preliminary support for aspects of the enemy release and evolution of increased competitive ability hypotheses in this successful invasive. This study highlights the contribution of next-generation sequencing to better understanding the molecular mechanisms underlying ecological hypotheses that are important in successful plant invasions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Ureaplasmas are the most frequently isolated microorganisms from the amniotic fluid (AF) of pregnant women and can cause chronic infections that are difficult to eradicate with standard macrolide treatment. We tested the effects of erythromycin treatment on phenotypic and genotypic markers of ureaplasmal antimicrobial resistance in sheep. Method: At 50 days of gestation (d, term=145d) 12 pregnant ewes received intra-amniotic injections of U. parvum serovar 3 (erythromycin-sensitive, 2x104 colony-forming-units). At 100d ewes received: erythromycin treatment (500 mg, q3h for 4 days, IM, n=6) or no treatment (n=6). Fetuses were delivered surgically (125d) and AF and chorioamnion were collected for: culture, minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) testing; 23S rRNA sequencing; and detection of macrolide-lincosamide-streptogramin resistance (MLSr) genes. Results: MICs of erythromycin, azithromycin and roxithromycin against AF isolates were low (range = 0.06 mg/L to 1.0 mg/L); however, chorioamnion isolates demonstrated increased resistance to roxithromycin (0.13 – 5.33 mg/L). 62.5% of chorioamnion ureaplasmas formed biofilms in vitro and mutations (125 nucleotides, 29.6%) were found in the 23S rRNA gene (domain V) of chorioamnion (but not AF) ureaplasmas. MLSr genes (ermB, msrC and msrD) were detected in 100% of chorioamnion isolates and only msrD was detected in AF isolates (40%). Conclusions: 23S rRNA mutations and MLSr genes occurred independently of erythromycin treatment, suggesting that the anatomical site of infection and microenvironment may exert selective pressures on ureaplasmas that cause genetic changes and alter antimicrobial sensitivity profiles. These results have serious implications for treatment of in utero infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated and characterized 21 microsatellite loci in the vulnerable and iconic Australian lungfish, Neoceratodus forsteri. Loci were screened across eight individuals from the Burnett River and 40 individuals from the Pine River. Genetic diversity was low with between one and six alleles per locus within populations and a maximum expected heterozygosity of 0.774. These loci will now be available to assess effective population sizes and genetic structure in N. forsteri across its natural range in South East Queensland, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanoma has historically been refractive to traditional therapeutic approaches. As such, the development of novel drug strategies has been needed to improve rates of overall survival in patients with melanoma, particularly those with late stage or disseminated disease. Recent success with molecularly based targeted drugs, such as Vemurafenib in BRAF-mutant melanomas, has now made “personalized medicine” a reality within some oncology clinics. In this sense, tailored drugs can be administered to patients according to their tumor “mutation profiles.” The success of these drug strategies, in part, can be attributed to the identification of the genetic mechanisms responsible for the development and progression of metastatic melanoma. Recently, the advances in sequencing technology have allowed for comprehensive mutation analysis of tumors and have led to the identification of a number of genes involved in the etiology of metastatic melanoma. As the methodology and costs associated with next-generation sequencing continue to improve, this technology will be rapidly adopted into routine clinical oncology practices and will significantly impact on personalized therapy. This review summarizes current and emerging molecular targets in metastatic melanoma, discusses the potential application of next-generation sequencing within the paradigm of personalized medicine, and describes the current limitations for the adoption of this technology within the clinic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However, to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognize in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS) generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM) unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP) residing in HASTY, a previously characterized gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing techniques have revolutionized over the last decade providing researchers with low cost, high-throughput alternatives compared to the traditional Sanger sequencing methods. These sequencing techniques have rapidly evolved from first-generation to fourth-generation with very broad applications such as unravelling the complexity of the genome, in terms of genetic variations, and having a high impact on the biological field. In this review, we discuss the transition of sequencing from the second-generation to the third- and fourth-generations, and describe some of their novel biological applications. With the advancement in technology, the earlier challenges of minimal size of the instrument, flexibility of throughput, ease of data analysis and short run times are being addressed. However, the need for prospective analysis and effectiveness to test whether the knowledge of any given new variants identified has an effect on clinical outcome may need improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to assess the role of genetic variation in mitochondrial function and how this relates to migraine pathophysiology. Using our unique Norfolk Island population, a custom in-house next generation sequencing methodology was developed. This data for the first time showed that there is a molecular genetic link between mitochondrial dysfunction and migraine susceptibility. This work has provided the foundation for further studies aimed at utilising the identified markers in improved migraine diagnostic and therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both red snow crab (Chionoecetes japonicus Rathbun, 1932) and snow crab (Chionoecetes opilio Fabricius, 1788) are commercially important species in Korea. The geographical ranges of the two species overlap in the East Sea, where both species are fished commercially. Morphological identification of the two species and putative hybrids can be difficult because of their overlapping morphological characteristics. The presence of putative hybrids can affect the total allowable catch (TAC) of C. japonicus and C. opilio, and causes problems managing C. japonicus and C. opilio wild resources. To date, however, no natural hybridization has been reported between C. japonicus and C. opilio, despite their overlapping distributions along the coast of the East Sea. In this study, the internal transcribed spacer (ITS) region of major ribosomal RNA genes from the nuclear genome and the cytochrome oxidase I (CO I) gene from the mitochondrial genome were sequenced to determine whether natural hybridization occurs between the two species. Our results revealed that all putative hybrids identified using morphological traits had two distinct types of ITS sequences corresponding to those of both parental species. Mitochondrial CO I gene sequencing showed that all putative hybrids had sequences identical to C. japonicus. A genotyping assay based on single nucleotide polymorphisms in the ITS1 region and the CO I gene produced the most efficient and accurate identification of all hybrid individuals. Molecular data clearly demonstrate that natural hybridization does occur between C. japonicus and C. opilio, but only with C. japonicus as the maternal parent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. Methods A 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. Results We identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.