205 resultados para gait kinematic parameters

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dorsiflexion (DF) of the foot plays an essential role in both controlling balance and human gait. Electromyography and Sonomyography can provide information on several aspects of muscle function. The aim was to describe a new method for real-time monitoring of muscular activity, as measured using EMG, muscular architecture, as measured using SMG, force, as measured using dynamometry, and kinematic parameters, as measured using IS during isometric and isotonic contractions of the foot DF. The present methodology may be clinically relevant because it involves a reproducible procedure which allows the function and structure of the foot DF to be monitored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit– Hartenberg (DH) notation. Once a manipulator’s kinematics is parameterized in this form, a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning, and simulation are available. The proposed method has two parts. The first is the “walk through,” a simple procedure that creates a string of elementary translations and rotations, from the user-defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms, which can be represented in standard or modified DH notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation and a Java program is available as supplementary downloadable material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Hallux valgus (HV) has been linked to functional disability and increased falls risk in older adults. However, specific gait alterations in individuals with HV are unclear. This systematic review investigated gait parameters associated with HV in otherwise healthy adults. Methods Electronic databases (Medline, Embase, CINAHL) were searched to October 2011, including cross-sectional studies with clearly defined HV and non-HV comparison groups. Two investigators independently rated studies for methodological quality. Effect sizes (95% confidence intervals (CI)) were calculated as standardized mean differences (SMD) for continuous data and risk ratios (RR) for dichotomous data. Results Nine studies included a total of 589 participants. Three plantar pressure studies reported increased hallux loading (SMD 0.56 to 1.78) and medial forefoot loading (SMD 0.62 to 1.21), while one study found reduced first metatarsal loading (SMD −0.61, CI −1.19 to −0.03) in HV participants. HV participants demonstrated less ankle and rearfoot motion during terminal stance (SMD −0.81 to −0.63) and increased intrinsic muscle activity (RR 1.6, 1.1 to 2.2). Most studies reported no differences in spatio-temporal parameters; however, one study found reduced speed (SMD −0.73, -1.25 to −0.20), step length (SMD −0.66 to −0.59) and less stable gait patterns (SMD −0.86 to −0.78) in older adults with HV. Conclusions HV impacts on particular gait parameters, and further understanding of potentially modifiable factors is important for prevention and management of HV. Cause and effect relationships cannot be inferred from cross-sectional studies, thus prospective studies are warranted to elucidate the relationship between HV and functional disability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction forces measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a process for evolving a stable humanoid walking gait that is based around parameterised loci of motion. The parameters of the loci are chosen by an evolutionary process based on the criteria that the robot's ZMP (zero moment point) follows a desirable path. The paper illustrates the evolution of a straight line walking gait. The gait has been tested on a 1.2 m tall humanoid robot (GuRoo). The results, apart form illustrating a successful walk, illustrate the effectiveness of the ZMP path criterion in not only ensuring a stable walk, but also in achieving efficient use of the actuators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in stride characteristics and gait rhythmicity characterize gait in Parkinson's disease and are widely believed to contribute to falls in this population. However, few studies have examined gait in PD patients who fall. This study reports on the complexities of walking in PD patients who reported falling during a 12-month follow-up. Forty-nine patients clinically diagnosed with idiopathic PD and 34 controls had their gait assessed using three-dimensional motion analysis. Of the PD patients, 32 (65%) reported at least one fall during the follow-up compared with 17 (50%) controls. The results showed that PD patients had increased stride timing variability, reduced arm swing and walked with a more stooped posture than controls. Additionally, PD fallers took shorter strides, walked slower, spent more time in double-support, had poorer gait stability ratios and did not project their center of mass as far forward of their base of support when compared with controls. These stride changes were accompanied by a reduced range of angular motion for the hip and knee joints. Relative to walking velocity, PD fallers had increased mediolateral head motion compared with PD nonfallers and controls. Therefore, head motion could exceed “normal” limits, if patients increased their walking speed to match healthy individuals. This could be a limiting factor for improving gait in PD and emphasizes the importance of clinically assessing gait to facilitate the early identification of PD patients with a higher risk of falling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.