6 resultados para exudate
em Queensland University of Technology - ePrints Archive
Resumo:
The lack of fundamental knowledge on the biological processes associated with wound healing represents a significant challenge. Understanding the biochemical changes that occur within a chronic wound could provide insights into the wound environment and enable more effective wound management. We report on the stability of wound fluid samples under various conditions and describe a high-throughput approach to investigate the altered biochemical state within wound samples collected from various types of chronic, ulcerated wounds. Furthermore, we discuss the viability of this approach in the early stages of wound sample protein and metabolite profiling and subsequent biomarker discovery. This approach will facilitate the detection of factors that may correlate with wound severity and/or could be used to monitor the response to a particular treatment.
Resumo:
Non-healing wounds represent a significant burden to healthcare systems and societies worldwide. Current best practice treatments of chronic wounds can require patients to undergo extensive periods of therapy without any positive outcome. This consumes substantial healthcare resources and severely impacts patient quality of life. At present, there are no measures to predict a patient's response to best practice care. The hypothesis of this thesis was that biochemical markers could be found within the wound fluid of chronic ulcers and these markers could predict the healing outcome of an ulcer undergoing best practice care. Discovery phase proteomic and mass spectrometry techniques were utilised to determine novel proteins that correlated with the healing outcome of ulcers. These candidate biomarkers could be developed into simple dip-stick tools for use in clinical practice. This would aid clinicians in the choice of effective wound management strategies to address hard-to-heal wounds.
Resumo:
Context Patients with venous leg ulcers experience multiple symptoms, including pain, depression, and discomfort from lower leg inflammation and wound exudate. Some of these symptoms impair wound healing and decrease quality of life (QOL). The presence of co-occurring symptoms may have a negative effect on these outcomes. The identification of symptom clusters could potentially lead to improvements in symptom management and QOL. Objectives To identify the prevalence and severity of common symptoms and the occurrence of symptom clusters in patients with venous leg ulcers. Methods For this secondary analysis, data on sociodemographic characteristics, medical history, venous history, ulcer and lower limb clinical characteristics, symptoms, treatments, healing, and QOL were analyzed from a sample of 318 patients with venous leg ulcers who were recruited from hospital outpatient and community nursing clinics for leg ulcers. Exploratory factor analysis was used to identify symptom clusters. Results Almost two-thirds (64%) of the patients experienced four or more concurrent symptoms. The most frequent symptoms were sleep disturbance (80%), pain (74%), and lower limb swelling (67%). Sixty percent of patients reported three or more symptoms at a moderate-to-severe level of intensity (e.g., 78% reported disturbed sleep frequently or always; the mean pain severity score was 49 of 100, SD 26.5). Exploratory factor analysis identified two symptom clusters: pain, depression, sleep disturbance, and fatigue; and swelling, inflammation, exudate, and fatigue. Conclusion Two symptom clusters were identified in this sample of patients with venous leg ulcers. Further research is needed to verify these symptom clusters and to evaluate their effect on patient outcomes.
Resumo:
A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20±3.14% compared with 3.59±2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.
Resumo:
Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.
Resumo:
The objective of this study was to identify symptom clusters and their effect on quality of life (QOL) of adults with chronic leg ulcers of mixed venous and arterial aetiology. A secondary analysis of data from four existing prospective longitudinal studies conducted by a wound healing research group in Australia was undertaken. A total of 110 patients who met the inclusion criteria were selected for this study. Exploratory factor analysis (EFA) was used to identify symptom clusters and correlational analyses to examine relationships between the identified symptom clusters and QOL. The EFA identified two distinct symptom clusters: a 'systemic symptom cluster' consisting of pain, fatigue and depressive symptoms; and a 'localised-leg symptom cluster' including pain, fatigue, oedema, lower limb inflammation and exudate. Physical QOL correlated significantly with the systemic symptom cluster (r = -0·055, P < 0·0001) and the localised-leg symptom cluster (r = -0·054, P < 0·0001), whereas mental QOL was associated only with the systemic symptom cluster (r = -0·038, P = 0·01). The results suggest that appropriate intervention strategies targeting specific symptom clusters should be developed. Targeting patients with symptom clusters is particularly important because they are at high risk and the most vulnerable for reduced QOL.