432 resultados para engineering students

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project focused group work is significant in developing social and personal skills as well as extending the ability to identify, formulate and solve engineering problems. As a result of increasing undergraduate class sizes, along with the requirement for many students to work part-time, group projects, peer and collaborative learning are seen as a fundamental part of engineering education. Group formation, connection to learning objectives and fairness of assessment has been widely reported as major issues that leave students dissatisfied with group project based units. Several strategies were trialled including a study of formation of groups by different methods across two engineering disciplines over the past 2 years. Other strategies involved a more structured approach to assessment practices of civil and electrical engineering disciplines design units. A confidential online teamwork management tool was used to collect and collate student self and peer assessment ratings and used for both formative feedback as well as assessment purposes. Student satisfaction and overall academic results in these subjects have improved since the introduction of these interventions. Both student and staff feedback highlight this approach as enhancing student engagement and satisfaction, improved student understanding of group roles, reducing number of dysfunctional groups whilst requiring less commitment of academic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics is an essential core engineering subject. It includes high level mathematical and theoretical contents, and basic concepts which are abstract in nature. Hence, Dynamics is considered as one of the hardest subjects in the engineering discipline. To assist our students in learning this subject, we have conducted a Teaching & Learning project to study ways and methods to effectively teach Dynamics based on visualization techniques. The research project adopts the five basic steps of Action Learning Cycle. It is found that visualization technique is a powerful tool for students learning Dynamics and helps to break the barrier of students who perceived Dynamics as a hard subject.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper details the results of the first phase of an on-going research into the sociocultural factors that influence the supervision of higher degrees research (HDR) engineering students in the Faculty of Built Environment and Engineering (BEE) and Faculty of Science and Technology (FaST) at Queensland University of Technology. A quantitative analysis was performed on the results from an online survey that was administered to 179 engineering students. The study reveals that cultural barriers impact their progression and developing confidence in their research programs. We argue that in order to assist international and non-English speaking background (NESB) research students to triumph over such culturally embedded challenges in engineering research, it is important for supervisors to understand this cohort's unique pedagogical needs and develop intercultural sensitivity in their pedagogical practice in postgraduate research supervision. To facilitate this, the governing body (Office of Research) can play a vital role in not only creating the required support structures but also their uniform implementation across the board.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Australian Universities are very successful in attracting large number of international students. A large proportion of University revenue comes from the full fee paying international students. However, there have been many reports that international students face numerous problems when they arrive in Australia. The common management practice is to provide support staff services to deal with the orientation and welfare of international students. Such service units act as intermediaries between the students and the teaching and learning community of the university. However, the actual experience of international students may be difficult for support staff, counsellors, advisers and academic staff to anticipate. There is little information on the actual experience of students relative to their expectations. This study aimed at securing a deeper understanding of the contextually relevant issues facing by international students in Australian universities in order to develop management strategies aimed at improved teaching and learning outcomes for international students. Using a highly reliable survey questionnaire, a questionnaire survey was conducted among the international students at Queensland University of Technology (QUT), Brisbane, Australia. About 180 engineering students responded in the survey resulting in a response rate of 81%. Results indicate that international students face many difficulties including understanding colloquial language, Australian accent, cost of tuition, feelin isolation, safety, security, health services, accommodation and part time jobs. They also face difficulty in coping with learning methods in Australia, particularly in research report writing. However, they are happy with their lecturers and find them very helpful. Many of the students lacked the information regarding various community groups, recreational and sports facilities in Australia before arriving. Findings of the study show that there is a significant gap between the expectation of the students before coming to Australia and actual experience they experience here. Importantly, there is a lack of coordination between international students, international student services (ISS) and university management and as a consequence there have been little improvement in conditions. There is no direct link between student experience and University management. Many important suggestions arisen from this study and most important suggestion is that the student information system should be integrated with the University enterprise resource planning (ERP) to reduce the huge gap between international student expectation and actual experiences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose While a number of universities in Australia have embraced concepts such as project/problem‐based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a “critical literacy” into all engineering streams. This paper was presented at the 2004 International Conference on Engineering Education in Sustainable Development (EESD) in Barcelona, Spain, outlining a current initiative that is seeking to address the “critical literacy” dilemma. Design/methodology/approach The paper presents the positive steps taken by Australia's peak engineering body, the Institution of Engineers Australia (EA), in considering accreditation requirements for university engineering courses and its responsibility to ensure the inclusion of sustainability education material. It then describes a current initiative called the “Engineering Sustainable Solutions Program – Critical Literacies for Engineers Portfolio” (ESSP‐CL), which is being developed by The Natural Edge Project (TNEP) in partnership with EA and Unesco. Findings Content for the module was gathered from around the world, drawing on research from the publication The Natural Advantage of Nations: Business Opportunities, Innovation, and Governance in the Twenty‐first Century. Parts of the first draft of the ESSP‐CL have been trialled at Griffith University, Queensland, Australia with first year environmental engineering students, in May 2004. Further trials are now proceeding with a number of other universities and organisations nationally and internationally. Practical implications It is intended that ESSP‐CL will be a valuable resource to universities, professional development activities or other education facilities nationally and internationally. Originality/value This paper fulfils an identified information/resources need.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND There is little doubt that our engineering graduates’ ability to identify cultural differences and their potential to impact on engineering projects, and to work effectively with these differences is of key importance in the modern engineering practice. Within engineering degree programs themselves there is also a significant need to recognise the impact of changing student and staff profiles on what happens in the classroom. The research described in this paper forms part of a larger project exploring issues of intercultural competence in engineering. PURPOSE This paper presents an observational and survey study of undergraduate and postgraduate engineering students from four institutions working in groups on tasks with a purely technical focus, or with a cultural and humanitarian element. The study sought to explore how students rate their own intercultural competence and team process and whether any differences exist depending on the nature of the task they are working on. We also investigated whether any differences were evident between groups of first year, second year and postgraduate students. DESIGN/METHOD The study used the miniCQS instrument (Ang & Van Dyne, 2008) and a Bales Interaction Process Analysis based scale (Bales, 1950; Carney, 1976) to collect students self ratings of group process, task management, and cultural experience and behaviour. The Bales IPA was also used for coding video observations of students working in groups. Survey data were used to form descriptive variables to compare outcomes across the different tasks and contexts. Observations analysed in Nvivo were used to provide commentary and additional detail on the quantitative data. RESULTS The results of the survey indicated consistent mean scores on each survey item for each group of students, despite vastly different tasks, student backgrounds and educational contexts. Some small, statistically significant mean differences existed, offering some basic insights into how task and student group composition could affect self ratings. Overall though, the results suggest minimal shift in how students view group function and their intercultural experience, irrespective of differing educational experience. CONCLUSIONS The survey results, contrasted with group observations, indicate that either students are not translating their experience (in the group tasks) into critical self assessment of their cultural competence and teamwork, or that they become more critical of team performance and cultural competence as their competence in these areas grows, so their ratings remain consistent. Both outcomes indicate that students need more intensive guidance to build their critical self and peer assessment skills in these areas irrespective of their year level of study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study involves teaching engineering students concepts in lubrication engineering that are heavily dependent on mathematics. Excellent learning outcomes have been observed when assessment tasks are devised for a diversity of learning styles. Providing different pathways to knowledge reduces the probability that a single barrier halts progress towards the ultimate learning objective. The interdisciplinary nature of tribology can be used advantageously to tie together multiple elements of engineering to solve real physical problems—an approach that seems to benefit a majority of engineering students. To put this into practice, various assessment items were devised on the study of hydrodynamics, culminating in a project to provide a summative evaluation of the students’ learning achievement. A survey was also conducted to assess other aspects of students’ learning experiences under the headings: ‘perception of learning’ and ‘overall satisfaction’. High degrees of achievement and satisfaction were observed. An attempt has been made to identify the elements contributing to success so that they may be applied to other challenging concepts in engineering education.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While there is clear recognition of the need to incorporate sustainable development into university curricula, there is limited research that examines how to achieve that integration or evaluates its impacts on student learning. This paper responds to these knowledge gaps through a case study of curriculum renewal that involved embedding sustainability into a first year engineering curriculum. The initiative was guided by a deliberative and dynamic model for curriculum renewal that brought together internal and external stakeholders through a structured sequence of facilitated workshops and meetings. That process identified sustainability-related knowledge and skills relevant for first year engineering, and faculty members teaching in the first year program were guided through a process of curriculum renewal to meet those needs. The process through which the whole of curriculum renewal was undertaken is innovative and provides a case study of precedent in the field of education for sustainability. The study demonstrates the contribution that can be made by a web-based sustainability portal in supporting curriculum renewal. Learning and teaching outcomes were evaluated through ‘before and after surveys’ of the first year engineering students. Statistically significant increases in student's self-reported knowledge of sustainability were measured as a result of exposure to the renewed first year curriculum and this confirmed the value of the initiative in terms of enhancing student learning. While applied in this case to engineering, the process to achieve integration of sustainability into the curriculum approach is likely to have value for other academic disciplines. Considering student performance on assignments and exam questions relating to sustainability would provide a stronger basis for future research to understand the impact of initiatives like this on student learning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.