18 resultados para diffusione anelastica, Compton, apparato sperimentale
em Queensland University of Technology - ePrints Archive
Resumo:
Neutron Compton scattering (NCS) measurements of the anisotropy of the momentum distribution and the mean Laplacian of the interatomic potential ∇2V have been performed using electron volt neutrons, with wave vector transfers between 24 Å−1 and 98 Å−1. The measured momentum distribution of the atoms displays significantly more anisotropy than a calculation using a model density of states. We have observed anisotropies in ∇2V for the first time. The results suggest that the atomic potential is harmonic within the graphite planes, but anharmonic for vibrations perpendicular to the planes.
Resumo:
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we report a new neutron Compton scattering (NCS) measurement of the ground state single atom kinetic energy of polycrystalline beryllium at momentum transfers in the range 27}104 As ~1 and temperatures in the range 110}1150 K. The measurements have been made with the electron Volt spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be &10% higher than calculations made in the harmonic approximation.
Resumo:
We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline ZrD2 over a range of momentum transfers, q between 27 and 178 °A−1. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both ZrD2 and Be. Finally we have shown how (∇2V), where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).
Resumo:
It is noted from observations of Compton (2009), Richards (2008), Taylor and Bennett (2002), and others that succession leadership planning and development fails to receive adequate attention in the corporate sector (see Byham 2002; Richards 2008; Wellins and Byham 2001). This paper acknowledges a marked paucity of systematic succession leadership development in education organisations. The need would seem to be compounded at a time when substantial attrition in the leadership ranks is expected over the next five years, reflecting widespread workforce demographics (Busine and Watt 2005; Jacobzone, Cambois, Chaplain, and Robine 1998; Taylor and Bennett 2002). The Lantern model has been developed in response to a perceived need to offer an integrated, systematic approach to organisational and succession leadership development. The model offers an organising framework for considering succession leadership development in a strategic, integrated way. The concept is based on organisational development and leadership literature which sees leadership development not as a series of 'tacked on' activities but as an organic 'whole of organisation' approach fostering the relevant knowledge, skills and understandings which support and 'grow' leaders as the organisation goes about its business. This paper explores how such an ideal might happen, and it suggests that pursuing such an ideal is timely. The leadership baton is set to shift at an accelerated rate in universities, as for organisations broadly, owing to age-related attrition. Moreover, given the increased complexity and demands of the leadership remit in the education leadership environment, it would seem particularly opportune to explore a framework concentrating on engendering a positive, connected organisational climate capable of growing strategic leadership strength from within. Eight core elements of the model, derived from the literature and practice research, are explored. The Lantern model purports to 'cover the bases' of succession leadership development, with particular reference to the education environment. The model is next described
Resumo:
The combination of alcohol and driving is a major health and economic burden to most communities in industrialised countries. The total cost of crashes for Australia in 1996 was estimated at approximately 15 billion dollars and the costs for fatal crashes were about 3 billion dollars (BTE, 2000). According to the Bureau of Infrastructure, Transport and Regional Development and Local Government (2009; BITRDLG) the overall cost of road fatality crashes for 2006 $3.87 billion, with a single fatal crash costing an estimated $2.67 million. A major contributing factor to crashes involving serious injury is alcohol intoxication while driving. It is a well documented fact that consumption of liquor impairs judgment of speed, distance and increases involvement in higher risk behaviours (Waller, Hansen, Stutts, & Popkin, 1986a; Waller et al., 1986b). Waller et al. (1986a; b) asserts that liquor impairs psychomotor function and therefore renders the driver impaired in a crisis situation. This impairment includes; vision (degraded), information processing (slowed), steering, and performing two tasks at once in congested traffic (Moskowitz & Burns, 1990). As BAC levels increase the risk of crashing and fatality increase exponentially (Department of Transport and Main Roads, 2009; DTMR). According to Compton et al. (2002) as cited in the Department of Transport and Main Roads (2009), crash risk based on probability, is five times higher when the BAC is 0.10 compared to a BAC of 0.00. The type of injury patterns sustained also tends to be more severe when liquor is involved, especially with injuries to the brain (Waller et al., 1986b). Single and Rohl (1997) reported that 30% of all fatal crashes in Australia where alcohol involvement was known were associated with Breadth Analysis Content (BAC) above the legal limit of 0.05gms/100ml. Alcohol related crashes therefore contributes to a third of the total cost of fatal crashes (i.e. $1 billion annually) and crashes where alcohol is involved are more likely to result in death or serious injury (ARRB Transport Research, 1999). It is a major concern that a drug capable of impairment such as is the most available and popular drug in Australia (Australian Institute of Health and Welfare, 2007; AIHW). According to the AIHW (2007) 89.9% of the approximately 25,000 Australians over the age of 14 surveyed had consumed at some point in time, and 82.9% had consumed liquor in the previous year. This study found that 12.1% of individuals admitted to driving a motor vehicle whilst intoxicated. In general males consumed more liquor in all age groups. In Queensland there were 21503 road crashes in 2001, involving 324 fatalities and the largest contributing factor was alcohol and or drugs (Road Traffic Report, 2001). 23438 road crashes in 2004, involving 289 fatalities and the largest contributing factor was alcohol and or drugs (DTMR, 2009). Although a number of measures such as random breath testing have been effective in reducing the road toll (Watson, Fraine & Mitchell, 1995) the recidivist drink driver remains a serious problem. These findings were later supported with research by Leal, King, and Lewis (2006). This Queensland study found that of the 24661 drink drivers intercepted in 2004, 3679 (14.9%) were recidivists with multiple drink driving convictions in the previous three years covered (Leal et al., 2006). The legal definition of the term “recidivist” is consistent with the Transport Operations (Road Use Management) Act (1995) and is assigned to individuals who have been charged with multiple drink driving offences in the previous five years. In Australia relatively little attention has been given to prevention programs that target high-risk repeat drink drivers. However, over the last ten years a rehabilitation program specifically designed to reduce recidivism among repeat drink drivers has been operating in Queensland. The program, formally known as the “Under the Limit” drink driving rehabilitation program (UTL) was designed and implemented by the research team at the Centre for Accident Research and Road Safety in Queensland with funding from the Federal Office of Road Safety and the Institute of Criminology (see Sheehan, Schonfeld & Davey, 1995). By 2009 over 8500 drink-drivering offenders had been referred to the program (Australian Institute of Crime, 2009).
Resumo:
The "standard" procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument’s scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron–proton scattering results that together called in to question the validity of the "standard" calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron–deuteron scattering from D2 in the backscattering angular range (theata > 90 degrees) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the "standard" calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present "standard" calibration procedure is seriously deficient and leads to artificial outcomes. For Case(A), we allude to the topic of attosecond quantumdynamical phenomena and our recent neutron scattering experiments from H2 molecules. For Case(B),some suggestions as to how the "standard" calibration could be considerably improved are made.
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
An editorial commentary on applications of critical social geography, communications theory and Indigenous studies to the analysis of spatialization in literacy education research.
Resumo:
The representation of vampires in horror movies and television programmes has changed considerably over the last two decades. No longer is the vampire portrayed simply as a monster or representation of death. Now, the vampire on our screen such as True Blood’s Bill Compton, or Twilight’s Edward Cullen, passes as human, chooses to make morally sound decisions, becomes an upstanding assimilated citizen, works in the community, and aspires to be a husband to mortal women. The success of recent series such as The Twilight Saga (2009, 2010, 2011, 2012), The Vampire Diaries (2009 - ) and True Blood (2008 - ) has popularised the idea of vampires who cling to remnants of their humanity (or memories of what it means to be human) and attempt to live as human, which builds upon similar – albeit embryonic – themes which emerged from the vampire sub-genre in the 1990s. Within these narratives, representations of the other have shifted from the traditional idea of the monster, to alternative and surprising loci. As this chapter argues, humans themselves, and the concept of the human body, now represent, in many instances, both abject and other. The chapter begins by considering the nature of the abject and otherness in relation to representations of classical vampires and how they have traditionally embodied the other. This provides a backdrop against which to examine the characteristics of the contemporary mainstreaming vampire ‘monster’. An examination of the broad thematic and representational shifts from other to mainstream vampire demonstrates how mainstream monsters are increasingly assimilating into mortal lifestyles with trappings that many viewers may find appealing. The same shifts in theme and representation also reveal that humans are frequently cast as mundane and unappealing in contemporary vampire narratives.