391 resultados para cost equations
em Queensland University of Technology - ePrints Archive
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
International evidence on the cost and effects of interventions for reducing the global burden of depression remain scarce. Aims: To estimate the population-level cost-effectiveness of evidence-based depression interventions and their contribution towards reducing current burden. Method: Primary-care-based depression interventions were modelled at the level of whole populations in 14 epidemiological subregions of the world. Total population-level costs (in international dollars or I$) and effectiveness (disability adjusted life years (DALYs) averted) were combined to form average and incremental cost-effectiveness ratios. Results: Evaluated interventions have the potential to reduce the current burden of depression by 10–30%. Pharmacotherapy with older antidepressant drugs, with or without proactive collaborative care, are currently more cost-effective strategies than those using newer antidepressants, particularly in lower-income subregions. Conclusions: Even in resource-poor regions, each DALYaverted by efficient depression treatments in primary care costs less than 1 year of average per capita income, making such interventions a cost-effective use of health resources. However, current levels of burden can only be reduced significantlyif there is a substantialincrease substantial increase intreatment coverage.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).