771 resultados para condition assessment
em Queensland University of Technology - ePrints Archive
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
This paper presents the results of a research project aimed at examining the capabilities and challenges of two distinct but not mutually exclusive approaches to in-service bridge assessment: visual inspection and installed monitoring systems. In this study, the intended functionality of both approaches was evaluated on its ability to identify potential structural damage and to provide decision-making support. Inspection and monitoring are compared in terms of their functional performance, cost, and barriers (real and perceived) to implementation. Both methods have strengths and weaknesses across the metrics analyzed, and it is likely that a hybrid evaluation technique that adopts both approaches will optimize efficiency of condition assessment and ultimately lead to better decision making.
Resumo:
Multimetric ecological condition assessment has become an important biodiversity management tool. This study was the first to examine the reliability of these ecological surrogates across variable environments, and the implications for surrogate efficacy. It was demonstrated that through strategic application and design of the multimetric ecological condition index, the effects of environmental gradients and disturbance regimes can be mitigated, and that ecological condition assessment may serve as a scientifically rigorous approach for conservation planning.
Resumo:
This report is a technical assessment of the hydrological environment of the southern Moreton Bay islands and follows the terms of reference supplied by the then Queensland Department of Natural Resources and Water. The terms of reference describe stage 1 as a condition assessment and stage 2 as an assessment of the implications of water planning scenarios on future condition. This report is the first stage of a two-stage investigation whose primary purpose is to identify and assess groundwater dependent ecosystems (GDEs) and the groundwater flow regimes necessary to support them. Within this context, the groundwaters themselves are also considered and comment made on their condition. Information provided in this report will inform an amendment to the Logan Basin Water Resource Plan to incorporate the southern Moreton Bay islands. The study area is the water resource plan amendment area, which includes North and South Stradbroke islands and the smaller islands between these and the mainland, including the inhabited smaller rocky islands—namely, Macleay, Russell, Karragarra, Lamb and Coochiemudlo islands. This assessment is largely a desktop study based on existing information, but incorporates some field observations, input from experts in specific areas and community representatives, and the professional experience and knowledge of the authors. This report reviews existing research and information on the southern Moreton Bay area with an emphasis on North Stradbroke Island, as it represents the largest and most regionally significant groundwater resource in southern Moreton Bay. The report provides an assessment of key waterrelated environmental features, their condition and their degree of dependence on groundwater. This report also assesses the condition and status of ecosystems within this region. In addition, the report identifies information gaps, uncertainties and potential impacts; reviews groundwater models that have been developed for North Stradbroke Island; and makes recommendations on monitoring and research needs.
Resumo:
The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
Structural Health Monitoring (SHM) is defined as the use of on-structure sensing system to monitor the performance of the structure and evaluate its health state. Recent bridge failures, such as the collapses of the 1-35W Highway Bridge in USA, the collapse of the Can Tho Bridge in Vietnam and the Xijiang River Bridge in the Mainland China, all of which happened in the year 2007, have alerted the importance of structural health monitoring. This book presents a background of SHM technologies together with its latest development and successful applications. It is a book launched to celebrate the establishment of the Australian Network of Structural Health Monitoring (ANSHM). The network comprising leading SHM experts in Australia promotes and advances SHM research, application, education and development in Australia.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
In recent years, Water Sensitive Urban Design (WSUD) has been strongly promoted in South East Queensland to mitigate quantity and quality issues in relation to stormwater. Gold Coast City Council has implemented WSUD devices widely for stormwater management for a number of years and is planning to continue this practice into the future. According to the planning policy of Gold Coast City Council, the adoption of WSUD practices is now mandatory for any new development within the city. As a result, Council is expected to be in possession of tens of millions of dollars of these assets in the future and will be responsible for their maintenance and long-term management. Any shortcoming in the implementation of best practice can potentially result in substantial liability for the Council in the future. However, there has been limited evaluation of WSUD systems in relation to their performance, long-term maintenance, and current knowledge gaps. It was considered that periodical audits of WSUD applications on the Gold Coast is vital to ensure that Council’s WSUD policies are continually improved to new learning and best practice is implemented and risk to Council is mitigated. After a series of stakeholder interviews within Council to understand current practical issues (weaknesses and strengths) in relation to the implementation of WSUD on the Gold Coast, a field audit comprising of condition assessment of eleven WSUD systems within four suburbs was undertaken to identify weaknesses and strengths in WSUD implementation on the Gold Coast. The outcomes of this study are presented in this paper.