314 resultados para cloud-based UC services
em Queensland University of Technology - ePrints Archive
Resumo:
Unified communications as a service (UCaaS) can be regarded as a cost-effective model for on-demand delivery of unified communications services in the cloud. However, addressing security concerns has been seen as the biggest challenge to the adoption of IT services in the cloud. This study set up a cloud system via VMware suite to emulate hosting unified communications (UC), the integration of two or more real time communication systems, services in the cloud in a laboratory environment. An Internet Protocol Security (IPSec) gateway was also set up to support network-level security for UCaaS against possible security exposures. This study was aimed at analysis of an implementation of UCaaS over IPSec and evaluation of the latency of encrypted UC traffic while protecting that traffic. Our test results show no latency while IPSec is implemented with a G.711 audio codec. However, the performance of the G.722 audio codec with an IPSec implementation affects the overall performance of the UC server. These results give technical advice and guidance to those involved in security controls in UC security on premises as well as in the cloud.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
Guaranteeing Quality of Service (QoS) with minimum computation cost is the most important objective of cloud-based MapReduce computations. Minimizing the total computation cost of cloud-based MapReduce computations is done through MapReduce placement optimization. MapReduce placement optimization approaches can be classified into two categories: homogeneous MapReduce placement optimization and heterogeneous MapReduce placement optimization. It is generally believed that heterogeneous MapReduce placement optimization is more effective than homogeneous MapReduce placement optimization in reducing the total running cost of cloud-based MapReduce computations. This paper proposes a new approach to the heterogeneous MapReduce placement optimization problem. In this new approach, the heterogeneous MapReduce placement optimization problem is transformed into a constrained combinatorial optimization problem and is solved by an innovative constructive algorithm. Experimental results show that the running cost of the cloud-based MapReduce computation platform using this new approach is 24:3%-44:0% lower than that using the most popular homogeneous MapReduce placement approach, and 2:0%-36:2% lower than that using the heterogeneous MapReduce placement approach not considering the spare resources from the existing MapReduce computations. The experimental results have also demonstrated the good scalability of this new approach.
Resumo:
This paper identifies a number of critical infrastructure applications that are reliant on location services from cooperative location technologies such as GPS and GSM. We show that these location technologies can be represented in a general location model, such that the model components can be used for vulnerability analysis. We perform a vulnerability analysis on these components of GSM and GPS location systems as well as a number of augmentations to these systems.
Resumo:
Research and practice have observed a shift towards service-oriented approaches that depend on input from citizens as co-producers of services. Yet in the delivery of public infrastructure the focus is still on managing assets rather than services. Using a Policy Delphi approach, we found that although experts advocate service-centric approaches guidelines and policies lack a service-centric perspective. Findings revealed a range of impediments to effective stakeholder involvement. The paper contributes to co-production and new public governance literature and offers directions for public infrastructure decision-makers to support and reconnect disengaged government–citizen relations, and determine ways of understanding optimal service outcomes.
Resumo:
In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.
Resumo:
Purpose This paper aims to use the Model of Goal-Directed Behavior (MGB) to examine the factors affecting consumers’ continued use of emerging technology-based self-services (TBSSs) with credence qualities. Professional services, which traditionally require specialized knowledge and high levels of interpersonal interaction to produce owing to their credence qualities, are increasingly delivered via self-service technologies. Health services delivered via mobile devices, for example, facilitate self-care without direct involvement from health professionals. Design/methodology/approach A mental health service delivered via the Internet and mobile phone, myCompass, was selected as the research context. Twenty interviews were conducted with users of myCompass and the data were thematically analyzed. Findings The findings of the study showcase the unique determinants of consumers’ continued use of TBSSs with credence qualities relative to the more routine services which have been the focus of extant research. The findings further provide support for the utility of the MGB in explaining service continuance, although the importance of distinguishing between extrinsic and intrinsic motivational components of behavioral desire and capturing the impact of social influence beyond subjective norms is also highlighted. Originality/value This study contributes to recent research examining differences in consumer responses across TBSSs and behavioral loyalty to these services. It also provides empirical evidence for broadening and deepening the MGB within this behavioral domain.
Resumo:
Quality of Service (QoS) is a new issue in cloud-based MapReduce, which is a popular computation model for parallel and distributed processing of big data. QoS guarantee is challenging in a dynamical computation environment due to the fact that a fixed resource allocation may become under-provisioning, which leads to QoS violation, or over-provisioning, which increases unnecessary resource cost. This requires runtime resource scaling to adapt environmental changes for QoS guarantee. Aiming to guarantee the QoS, which is referred as to hard deadline in this work, this paper develops a theory to determine how and when resource is scaled up/down for cloud-based MapReduce. The theory employs a nonlinear transformation to define the problem in a reverse resource space, simplifying the theoretical analysis significantly. Then, theoretical results are presented in three theorems on sufficient conditions for guaranteeing the QoS of cloud-based MapReduce. The superiority and applications of the theory are demonstrated through case studies.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology (IT) infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry’s technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry’s services to be offered through cloud-based “apps.”
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
Purpose – While many studies have predominantly looked at the benefits and risks of cloud computing, little is known whether and to what extent institutional forces play a role in cloud computing adoption. The purpose of this paper is to explore the role of institutional factors in top management team’s (TMT’s) decision to adopt cloud computing services. Design/methodology/approach – A model is developed and tested with data from an Australian survey using the partial least squares modeling technique. Findings – The results suggest that mimetic and coercive pressures influence TMT’s beliefs in the benefits of cloud computing. The results also show that TMT’s beliefs drive TMT’s participation, which in turn affects the intention to increase the adoption of cloud computing solutions. Research limitations/implications – Future studies could incorporate the influences of local actors who might also press for innovation. Practical implications – Given the influence of institutional forces and the plethora of cloud-based solutions on the market, it is recommended that TMTs exercise a high degree of caution when deciding for the types of applications to be outsourced as organizational requirements in terms of performance and security will differ. Originality/value – The paper contributes to the growing empirical literature on cloud computing adoption and offers the institutional framework as an alternative lens with which to interpret cloud-based information technology outsourcing.