115 resultados para cell differentiation

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein Barr virus (EBV) is a common γ-herpes virus, infecting approximately 90% of the world‟s population. It is also one of the first known viruses known to be oncogenic, and is associated with a number of tumour types, primarily lymphomas. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and many human miRNAs have been associated with the development of malignancies including cancer. EBV was the first human virus identified to express miRNAs and encodes more than 40 miRNAs within its genome. Yet, an understanding of the targets of EBV-miRNAs, and thereby the function of them in pathogenesis remains sadly limited. This study identifies a potential novel target of EBV-miRNAs, MECP2 and characterises the miRNA:mRNA interactions between two previously identified novel targets; Bim and EBF1. In particular, this study focuses upon the interaction between EBF1 and the EBV-miRNA BART11-5p, demonstrating a 151bp region of the EBF1 3‟UTR that is capable of mediating the silencing of luciferase expression by BART11-5p but is not capable of silencing a full length EBF1-3‟UTR luciferase construct. This study provides evidence that EBF1 may be a target of one or more EBV-miRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To date, mesenchymal stem cells (MSCs) from various tissues have been reported, but the yield and differentiation potential of different tissue-derived MSCs is still not clear. This study was undertaken in an attempt to investigate the multilineage stem cell potential of bone and cartilage explant cultures in comparison with bone marrow derived mesenchymal stem cells (BMSCs). The results showed that the surface antigen expression of tissue-derived cells was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing markers related to adhesion (CD29, CD166) and stem cells (CD90, CD105). The tissue-derived cells were able to differentiate into osteoblast, chondrocyte and adipocyte lineage pathways when stimulated in the appropriate differentiating conditions. However, compared with BMSCs, tissue-derived cells showed less capacity for multilineage differentiation when the level of differentiation was assessed in monolayer culture by analysing the expression of tissue-specific genes by reverse transcription polymerase chain reaction (RT-PCR) and histology. In high density pellet cultures, tissue-derived cells were able to differentiate into chondrocytes, expressing chondrocyte markers such as proteoglycans, type II collagen and aggrecan. Taken together, these results indicate that cells derived from tissue explant cultures reserved certain degree of differentiation properties of MSCs in vitro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND INFORMATION: Evidence has shown that mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are linked to stem cell properties. We currently lack a model showing how the occurrence of MET and EMT in immortalised cells influences the maintenance of stem cell properties. Thus, we established a project aiming to investigate the roles of EMT and MET in the acquisition of stem cell properties in immortalised oral epithelial cells. RESULTS: In this study, a retroviral transfection vector (pLXSN-hTERT) was used to immortalise oral epithelial cells by insertion of the hTERT gene (hTERT(+)-oral mucosal epithelial cell line [OME]). The protein and RNA expression of EMT transcriptional factors (Snail, Slug and Twist), their downstream markers (E-cadherin and N-cadherin) and embryonic stem cell markers (OCT4, Nanog and Sox2) were studied by reverse transcription PCR and Western blots in these cells. Some EMT markers were detected at both mRNA and protein levels. Adipocytes and bone cells were noted in the multi-differentiation assay, showing that the immortal cells underwent EMT. The differentiation assay for hTERT(+)-OME cells revealed the recovery of epithelial phenotypes, implicating the presence of MET. The stem cell properties were confirmed by the detection of appropriate markers. Altered expression of alpha-tubulin and gamma-tubulin in both two-dimensional-cultured (without serum) and three-dimensional-cultured hTERT(+)-OME spheroids indicated the re-programming of cytoskeleton proteins which is attributed to MET processes in hTERT(+)-OME cells. CONCLUSIONS: EMT and MET are essential for hTERT-immortalised cells to maintain their epithelial stem cell properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epigenetic changes correspond to heritable modifications of the chromatin structure, which do not involve any alteration of the DNA sequence but nonetheless affect gene expression. These mechanisms play an important role in cell differentiation, but aberrant occurrences are also associated with a number of diseases, including cancer and neural development disorders. In particular, aberrant DNA methylation induced by H. Pylori has been found to be a significant risk factor in gastric cancer. To investigate the sensitivity of different genes and cell types to this infection, a computational model of methylation in gastric crypts is developed. In this article, we review existing results from physical experiments and outline their limitations, before presenting the computational model and investigating the influence of its parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our understanding of the origin and fate of the IgE-switched B cell has been markedly improved by studies in mouse models. The immediate precursor of the IgE-switched B cell is either a relatively naive nonswitched B cell or a mature IgG-switched B cell. These 2 routes are referred to as the direct and indirect pathways, respectively. IgE responses derived from each pathway differ significantly, largely reflecting the difference in time spent in a germinal center and thus time for clonal expansion, somatic hypermutation, affinity maturation, and acquisition of a memory phenotype. The clinical and therapeutic implications for IgE responses in human subjects are still a matter of debate, largely because the immunization procedures used in the animal models are significantly different from classical atopic sensitization to allergens from pollen and mites. On the basis of the limited information available, it seems likely that these atopic IgE responses are characterized by a relatively low IgG/IgE ratio, low B-cell memory, and modest affinity maturation, which fits well with the direct switching pathway. It is still unresolved how the IgE response evolves to cover a wide epitope repertoire involving many epitopes per allergen, as well as many different allergens from a single allergen source. © 2013 American Academy of Allergy, Asthma & Immunology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation. © 2011 The Author(s).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca2+ signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca2+ signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca2+ signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca2+ pathway was blocked by Ca2+/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca2+ pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca2+ pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.