148 resultados para catalysis reaction
em Queensland University of Technology - ePrints Archive
Resumo:
A process for catalytic conversion and/or adsorption of gases inclusive of NOx, SOx, CO2, CO, dioxins and PAHs and combinations thereof wherein said gases may contain particulates which include contacting one or more of such gases with an alumino-silicate material having: a primarily tetrahedrally co-ordinated aluminium as established by the fact that the 27 A1 Magic Angle Spinning (MAS) provides a single peak at 55-58 ppm (FWHM ~23 ppm) relative to Al(H 2 0) 6 3 and (ii) a cation exchange capacity of at least 1 meq 100 in aqueous solution at room temperature.
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.
Resumo:
Significant cleavage by hammerhead ribozymes requires activation by divalent metal ions. Several models have been proposed to account for the influence of metal ions on hammerhead activity. A number of recent papers have presented data that have been interpreted as supporting a one-metal-hydroxide-ion mechanism. In addition, a solvent deuterium isotope effect has been taken as evidence against a proton transfer in the rate-limiting step of the cleavage reaction. We propose that these data are more easily explained by a two-metal-ion mechanism that does not involve a metal hydroxide, but does involve a proton transfer in the rate-limiting step.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.
Resumo:
The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu–Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(I) oxide species incorporated within a Cu2O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu–Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.
Resumo:
Sequential and one-pot Stille–Heck and Heck–Stille reaction processes have been invoked to give divergent access to polycyclic ring systems. Both reaction conditions and substrate structure are important in determining the nature of the reaction products formed. The Heck–Stille reactions have involved a reversal of the usual Heck regioselectivity and both cine- and ipso-substitutions have been observed in the Stille reaction.
Resumo:
The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.
Resumo:
Enhanced catalytic performance of zeoltes via the plasmonic effect of gold nanoparticles has been discovered to be closely correlated with the molecular polarity of reactants. The intensified polarised electrostatic field of Na+ in NaY plays a critical role in stretching the C=O bond of aldehydes to improve the reaction rate.
Resumo:
The Rhodococcus genus exhibits diverse enzymatic activity that can be exploited in the conversion of natural and anthropogenic nitrogenous compounds. This catalytic response provides a selective advantage in terms of available nutrients while also serving to remove otherwise harmful xenobiotics. This review provides a critical assessment of the literature on bioconversion of organo-nitrogen compounds with a consideration of applications in bioremediation and commercial biotechnology. By examining the major nitro-organic compounds (amino acids, amines, nitriles, amides and nitroaromatics) in turn, the considerable repertoire of Rhodococcus spp. is established. The available published enzyme reaction data is coupled with genomic characterisation to provide a molecular basis for Rhodococcus enzyme activity with an assessment of the cellular properties that aid substrate accessibility and ensure stability. The metabolic gene clusters associated with the observed reaction pathways are identified and future directions in enzyme optimisation and metabolic engineering are assessed. © 2014 Society of Chemical Industry.
Resumo:
Graphitic carbon nitride (g-C3N4), as a promising metal-free catalyst for photo-catalytic and electrochemical water splitting, has recently attracted tremendous research interest. However, the underlying catalytic mechanism for the hydrogen evolution reaction (HER) is not fully understood. By using density functional theory calculations, here we have established that the binding free energy of hydrogen atom (ΔGH∗0) on g-C3N4 is very sensitive to mechanical strain, leading to substantial tuning of the HER performance of g-C3N4 at different coverages. The experimentally-observed high HER activity in N-doped graphene supported g-C3N4 (Zheng et al., 2014) is actually attributed to electron-transfer induced strain. A more practical strategy to induce mechanical strain in g-C3N4 is also proposed by doping a bridge carbon atom in g-C3N4 with an isoelectronic silicon atom. The calculated ΔGH∗0 on the Si-doped g-C3N4 is ideal for HER. Our results indicate that g-C3N4 would be an excellent metal-free mechano-catalyst for HER and this finding is expected to guide future experiments to efficiently split water into hydrogen based on the g-C3N4 materials.
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.