343 resultados para caspase 3

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apoptosis is essential for the maintenance of inherited genomic integrity. During DNA damage-induced apoptosis, mechanisms of cell survival, such as DNA repair are inactivated to allow cell death to proceed. Here, we describe a role for the mammalian DNA repair enzyme Exonuclease 1 (Exo1) in DNA damage-induced apoptosis. Depletion of Exo1 in human fibroblasts, or mouse embryonic fibroblasts led to a delay in DNA damage-induced apoptosis. Furthermore, we show that Exo1 acts upstream of caspase-3, DNA fragmentation and cytochrome c release. In addition, induction of apoptosis with DNA-damaging agents led to cleavage of both isoforms of Exo1. The cleavage of Exo1 was mapped to Asp514, and shown to be mediated by caspase-3. Expression of a caspase-3 cleavage site mutant form of Exo1, Asp514Ala, prevented formation of the previously observed fragment without any affect on the onset of apoptosis. We conclude that Exo1 has a role in the timely induction of apoptosis and that it is subsequently cleaved and degraded during apoptosis, potentially inhibiting DNA damage repair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are two predominant theories for lumen formation in tissue morphogenesis: cavitation driven by cell death, and membrane separation driven by epithelial polarity. To define the mechanism of lumen formation in prostate acini, we examined both theories in several cell lines grown in three-dimensional (3D) Matrigel culture. Lumen formation occurred early in culture and preceded the expression of cell death markers for apoptosis (active caspase 3) and autophagy (LC-3). Active caspase 3 was expressed by very few cells and inhibition of apoptosis did not suppress lumen formation. Despite LC-3 expression in all cells within a spheroid, this was not associated with cell death. However, expression of a prostate-secretory protein coincided with lumen formation and subsequent disruption of polarized fluid movement led to significant inhibition of lumen formation. This work indicates that lumen formation is driven by the polarized movement of fluids and proteins in 3D prostate epithelial models and not by cavitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Although PPARγ antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARγ ligands induce PPARγ-independent effects. There is a need to better define such effects to permit rational utilization of these agents. Methods We have studied the effects of a range of endogenous and synthetic PPARγ ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2). Results 15-deoxy-prostaglandin J2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARγ antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis. Conclusion Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARγ-independent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.