86 resultados para antimigraine agent
em Queensland University of Technology - ePrints Archive
Resumo:
Migraine is a common genetically linked neurovascular disorder. Approximately ~12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ~3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.
Resumo:
The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
An adaptive agent improves its performance by learning from experience. This paper describes an approach to adaptation based on modelling dynamic elements of the environment in order to make predictions of likely future state. This approach is akin to an elite sports player being able to “read the play”, allowing for decisions to be made based on predictions of likely future outcomes. Modelling of the agent‟s likely future state is performed using Markov Chains and a technique called “Motion and Occupancy Grids”. The experiments in this paper compare the performance of the planning system with and without the use of this predictive model. The results of the study demonstrate a surprising decrease in performance when using the predictions of agent occupancy. The results are derived from statistical analysis of the agent‟s performance in a high fidelity simulation of a world leading real robot soccer team.