847 resultados para anomalous user activity
em Queensland University of Technology - ePrints Archive
Resumo:
Systems, methods and articles for determining anomalous user activity are disclosed. Data representing a transaction activity corresponding to a plurality of user transactions can be received and user transactions can be grouped according to types of user transactions. The transaction activity can be determined to be anomalous in relation to the grouped user transactions based on a predetermined parameter.
Resumo:
The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.
Resumo:
The ability to identify and assess user engagement with transmedia productions is vital to the success of individual projects and the sustainability of this mode of media production as a whole. It is essential that industry players have access to tools and methodologies that offer the most complete and accurate picture of how audiences/users engage with their productions and which assets generate the most valuable returns of investment. Drawing upon research conducted with Hoodlum Entertainment, a Brisbane-based transmedia producer, this project involved an initial assessment of the way engagement tends to be understood, why standard web analytics tools are ill-suited to measuring it, how a customised tool could offer solutions, and why this question of measuring engagement is so vital to the future of transmedia as a sustainable industry. Working with data provided by Hoodlum Entertainment and Foxtel Marketing, the outcome of the study was a prototype for a custom data visualisation tool that allowed access, manipulation and presentation of user engagement data, both historic and predictive. The prototyped interfaces demonstrate how the visualization tool would collect and organise data specific to multiplatform projects by aggregating data across a number of platform reporting tools. Such a tool is designed to encompass not only platforms developed by the transmedia producer but also sites developed by fans. This visualisation tool accounted for multiplatform experience projects whose top level is comprised of people, platforms and content. People include characters, actors, audience, distributors and creators. Platforms include television, Facebook and other relevant social networks, literature, cinema and other media that might be included in the multiplatform experience. Content refers to discreet media texts employed within the platform, such as tweet, a You Tube video, a Facebook post, an email, a television episode, etc. Core content is produced by the creators’ multiplatform experiences to advance the narrative, while complimentary content generated by audience members offers further contributions to the experience. Equally important is the timing with which the components of the experience are introduced and how they interact with and impact upon each other. Being able to combine, filter and sort these elements in multiple ways we can better understand the value of certain components of a project. It also offers insights into the relationship between the timing of the release of components and user activity associated with them, which further highlights the efficacy (or, indeed, failure) of assets as catalysts for engagement. In collaboration with Hoodlum we have developed a number of design scenarios experimenting with the ways in which data can be visualised and manipulated to tell a more refined story about the value of user engagement with certain project components and activities. This experimentation will serve as the basis for future research.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
At the centre of this research is an ethnographic study that saw the researcher embedded within the fabric of inner city life to better understand what characteristics of user activity and interaction could be enhanced by technology. The initial research indicated that the experience of traversing the city after dark unified an otherwise divergent user group through a shared concern for personal safety. Managing this fear and danger represented an important user need. We found that mobile social networking systems are not only integral for bringing people together, they can help in the process of users safely dispersing as well. We conclude, however, that at a time when the average iPhone staggers under the weight of a plethora of apps that do everything from acting as a carpenter’s level to a pregnancy predictor, we consider the potential for the functionality of a personal safety device to be embodied within a stand alone artifact.
Resumo:
Data generated via user activity on social media platforms is routinely used for research across a wide range of social sciences and humanities disciplines. The availability of data through the Twitter APIs in particular has afforded new modes of research, including in media and communication studies; however, there are practical and political issues with gaining access to such data, and with the consequences of how that access is controlled. In their paper ‘Easy Data, Hard Data’, Burgess and Bruns (2015) discuss both the practical and political aspects of Twitter data as they relate to academic research, describing how communication research has been enabled, shaped and constrained by Twitter’s “regimes of access” to data, the politics of data use, and emerging economies of data exchange. This conceptual model, including the ‘easy data, hard data’ formulation, can also be applied to Sina Weibo. In this paper, we build on this model to explore the practical and political challenges and opportunities associated with the ‘regimes of access’ to Weibo data, and their consequences for digital media and communication studies. We argue that in the Chinese context, the politics of data access can be even more complicated than in the case of Twitter, which makes scientific research relying on large social data from this platform more challenging in some ways, but potentially richer and more rewarding in others.
Resumo:
In the absence of telehealth technology, rural patients must travel to a regional or metropolitan hospital for a preadmission consultation one week before their surgery. Currently, examination of the patient’s chest using a stethoscope (auscultation) is not possible over a telehealth network as existing digital stethoscopes have been designed for in-person auscultation. We report on the initial phase of research which ultimately aims to design a digital stethoscope for use in the telehealth context. This initial research phase describes the complexity of the activity of preadmission clinics and the implications for the design of the stethoscope. The research is conducted through field studies of existing face-to-face and remote consultations.
Resumo:
Ethnography has gained wide acceptance in the industrial design profession and curriculum as a means of understanding the user. However, there is considerable confusion about the particularities of its practice accompanied by the absence of an interoperable vocabulary. The consequent interdisciplinary effort is a power play between disciplines whereby the methodological view of ethnography marginalises its theoretical and analytical components. In doing so, it restricts the potential of ethnography suggesting the need for alternative methods of informing the design process. This article suggests that activity theory, with an emphasis on human activity as the fundamental unit of study, is an appropriate methodology for the generation of user requirements. The process is illustrated through the adaptation of an ethnographic case study, for the design of classroom furniture in India.
Resumo:
Monitoring unused or dark IP addresses offers opportunities to extract useful information about both on-going and new attack patterns. In recent years, different techniques have been used to analyze such traffic including sequential analysis where a change in traffic behavior, for example change in mean, is used as an indication of malicious activity. Change points themselves say little about detected change; further data processing is necessary for the extraction of useful information and to identify the exact cause of the detected change which is limited due to the size and nature of observed traffic. In this paper, we address the problem of analyzing a large volume of such traffic by correlating change points identified in different traffic parameters. The significance of the proposed technique is two-fold. Firstly, automatic extraction of information related to change points by correlating change points detected across multiple traffic parameters. Secondly, validation of the detected change point by the simultaneous presence of another change point in a different parameter. Using a real network trace collected from unused IP addresses, we demonstrate that the proposed technique enables us to not only validate the change point but also extract useful information about the causes of change points.
Resumo:
Information and communication technologies (particularly websites and e-mail) have the potential to deliver health behavior change programs to large numbers of adults at low cost. Controlled trials using these new media to promote physical activity have produced mixed results. User-centered development methods can assist in understanding the preferences of potential participants for website functions and content, and may lead to more effective programs. Eight focus group discussions were conducted with 40 adults after they had accessed a previously trialed physical activity website. The discussions were audio taped, transcribed and interpreted using a themed analysis method. Four key themes emerged: structure, interactivity, environmental context and content. Preferences were expressed for websites that include simple interactive features, together with information on local community activity opportunities. Particular suggestions included online community notice boards, personalized progress charts, e-mail access to expert advice and access to information on specific local physical activity facilities and services. Website physical activity interventions could usefully include personally relevant interactive and environmentally focused features and services identified through a user-centered development process.
Resumo:
Presentation describling a project in data intensive research in the humanities. Measuring activity of publically available data in social networks such as Blogosphere, Twitter, Flickr, YouTube
Resumo:
The Australian National Data Service (ANDS) was established in 2008 and aims to: influence national policy in the area of data management in the Australian research community; inform best practice for the curation of data, and, transform the disparate collections of research data around Australia into a cohesive collection of research resources One high profile ANDS activity is to establish the population of Research Data Australia, a set of web pages describing data collections produced by or relevant to Australian researchers. It is designed to promote visibility of research data collections in search engines, in order to encourage their re-use. As part of activities associated with the Australian National Data Service, an increasing number of Australian Universities are choosing to implement VIVO, not as a platform to profile information about researchers, but as a 'metadata store' platform to profile information about institutional research data sets, both locally and as part of a national data commons. To date, the University of Melbourne, Griffith University, the Queensland University of Technology, and the University of Western Australia have all chosen to implement VIVO, with interest from other Universities growing.
Resumo:
We describe research into the identification of anomalous events and event patterns as manifested in computer system logs. Prototype software has been developed with a capability that identifies anomalous events based on usage patterns or user profiles, and alerts administrators when such events are identified. To reduce the number of false positive alerts we have investigated the use of different user profile training techniques and introduce the use of abstractions to group together applications which are related. Our results suggest that the number of false alerts that are generated is significantly reduced when a growing time window is used for user profile training and when abstraction into groups of applications is used.