95 resultados para Vessel
em Queensland University of Technology - ePrints Archive
Resumo:
Capacity reduction programs in the form of buybacks or decommissioning programs have had relatively widespread application in fisheries in the US, Europe and Australia. A common criticism of such programs is that they remove the least efficient vessels first, resulting in an increase in average efficiency of the remaining fleet. The effective fishing power of the fleet, therefore, does not decrease in proportion to the number of vessels removed. Further, reduced crowding may increase efficiency of the remaining vessels. In this paper, the effects of a buyback program on average technical efficiency in Australia’s Northern Prawn Fishery are examined using a multi-output distance function approach with an explicit inefficiency model. The results indicate that average efficiency of the remaining vessels was greater than that of the removed vessels, and that average efficiency of remaining vessels also increased as a result of reduced crowding.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
Capacity reduction programmes, in the form of buybacks or decommissioning, have had relatively widespread application in fisheries in the US, Europe and Australia. A common criticism of such programmes is that they remove the least efficient vessels first, resulting in an increase in average efficiency of the remaining fleet, which tends to increase the effective fishing power of the remaining fleet. In this paper, the effects of a buyback programme on average technical efficiency in Australia’s Northern Prawn Fishery are examined using a multi-output production function approach with an explicit inefficiency model. As expected, the results indicate that average efficiency of the remaining vessels was generally greater than that of the removed vessels. Further, there was some evidence of an increase in average scale efficiency in the fleet as the remaining vessels were closer, on average, to the optimal scale. Key factors affecting technical efficiency included company structure and the number of vessels fishing. In regard to fleet size, our model suggests positive externalities associated with more boats fishing at any point in time (due to information sharing and reduced search costs), but also negative externalities due to crowding, with the latter effect dominating the former. Hence, the buyback resulted in a net increase in the individual efficiency of the remaining vessels due to reduced crowding, as well as raising average efficiency through removal of less efficient vessels.
Resumo:
Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
Seagoing vessels have to undergo regular inspections, which are currently performed manually by ship surveyors. The main cost factor in a ship inspection is to provide access to the different areas of the ship, since the surveyor has to be close to the inspected parts, usually within arm's reach, either to perform a visual analysis or to take thickness measurements. The access to the structural elements in cargo holds, e.g., bulkheads, is normally provided by staging or by 'cherry-picking' cranes. To make ship inspections safer and more cost-efficient, we have introduced new inspection methods, tools, and systems, which have been evaluated in field trials, particularly focusing on cargo holds. More precisely, two magnetic climbing robots and a micro-aerial vehicle, which are able to assist the surveyor during the inspection, are introduced. Since localization of inspection data is mandatory for the surveyor, we also introduce an external localization system that has been verified in field trials, using a climbing inspection robot. Furthermore, the inspection data collected by the robotic systems are organized and handled by a spatial content management system that enables us to compare the inspection data of one survey with those from another, as well as to document the ship inspection when the robot team is used. Image-based defect detection is addressed by proposing an integrated solution for detecting corrosion and cracks. The systems' performance is reported, as well as conclusions on their usability, all in accordance with the output of field trials performed onboard two different vessels under real inspection conditions.
Resumo:
This paper examines the effect of individual transferable quota regimes on technology choice, such as choice of vessel size, by using the laboratory experiment method. We find that even if vessel sizes change over time, the quota price can converge to the fundamental value conditioned on the vessels chosen. We also find that subjects choose their vessel type to maximise their profits based on the quota trading prices in the previous period. This result implies that the efficiency of quota markets in the beginning period is important because any inefficiency in quota markets may affect vessel sizes in ensuing periods. Moreover, we find that the initial allocations may significantly influence vessel sizes through two channels: first, a higher initial allocation to a subject increases the likelihood that the subject invests in a large-sized vessel; second, the quota price may be higher and more unstable under unequal allocation than under equal allocation; thus, whether the allocation is equal influences subjects' choice of vessel type. © 2014 Australian Agricultural and Resource Economics Society Inc.
Resumo:
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10 -11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
Resumo:
A vessel stabilizer control system includes a sensor fault detection means which senses the availability of sensing signals from a gyrostabilizer precession motion sensor and a vessel roll motion sensor. The control system controls the action of a gyro-actuator which is mechanically coupled to a gyrostabilizer. The benefit of employing fault sensing of the sensors providing the process control variables is that the sensed number of available process control variables (or sensors) can be used to activate a tiered system of control modes. Each tiered control mode is designed to utilize the available process control variables to ensure safe and effective operation of the gyrostabilizer that is tolerant of sensor faults and loss of power supply. A control mode selector is provided for selecting the appropriate control mode based on the number of available process control variables.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Resumo:
This paper presents a detailed simulation model of a Naval coastal patrol vessel. The vessel described is a 50m long, fast monohull coastal patrol vessel. The paper describes the complete model and its implementation in Matlab-Simulink. In order to promote the use of this model, the Simulink files are openly available through a website.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
INTRODUCTION Inflammation is a protective attempt to facilitate the removal of damaged tissue and to initiate the healing response in other tissues. However, after spinal cord injury (SCI), this response is prolonged leading to secondary degeneration and glial scarring. Here, we investigate the potential of sustained delivery of pro-inflammatory factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) to increase early inflammatory events and promote inflammatory resolution. Method Animal ethics approval was obtained from the Queensland University of Technology. Adult Wistar-Kyoto rats (12-16 weeks old) were subjected to laminectomies and T10 hemisections. Animals were then randomised to treatment (implantation of osmotic pump (Alzet) loaded with 5ug VEGF & 5 ug PDGF) or control groups (lesion control or lesion plus pump delivering PBS). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200(NF200) and anti- ionized calcium binding adapter molecule 1 (Iba1). One way ANOVA was used for statistic analysis. Results At 1 month, active pump-treated cords showed a high level of axonal filament throughout the defects as compared to the control groups. The mean lesion size, as measured by NF200, was 0.47mm2 for the lesion control, 0.39mm2 for the vehicle control and 0.078mm2 for the active pump group. Significant differences were detected between the active pump group and the two control groups (AP vs LC p= 0.017 AG vs VC p= 0.004). Iba-1 staining also showed significant differences in the post-injury inflammatory response. Discussion We have shown that axons and activated microglia are co-located in the lesion of the treated cord. We hypothesise the delivery of VEGF/PDGF increases the local vessel permeability to inflammatory cells and activates these along with the resident microglia to threshold population, which ultimately resolved the prolonged inflammation. Here, we have shown that maintaining the inflammatory signals for at least 7 days improved the morphology of the injured cord. Conclusion This study has shown that boosting inflammation, by delivery VEGF/PDGF, in the early phase of SCI helps to reduce secondary degeneration and may promote inflammation resolution. This treatment may provide a platform for other neuro-regenrative therapies.
Resumo:
Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.