40 resultados para Twist drills

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Lower limb function in hurdling is patently asymmetrical. The lead limb undertakes the preparatory and landing steps while the trail limb contends with the hurdle and recovery steps. Discrete loading profiles of these steps will reflect the asymmetrical function and may provide useful insight into injury mechanisms. A pilot study was undertaken to determine the loading profiles of the hurdle, landing and recovery steps of elite male hurdlers. Equivalent data for steps between hurdles, where the running action is more symmetrical, were used for the purpose of comparison, simultaneously minimising the confounding effect of speed. Methodology: In-shoe pressures were recorded (FScan, 200 Hz) for four elite male hurdlers while they completed a routine hurdle drill at a self-selected fast but sub-race speed. The drill comprised of three consecutive hurdles. Data for the hurdle, landing and recovery steps of the first and second hurdles, along with data for the running steps between hurdles 1 and 2, and 2 and 3, were used for the purpose of analysis. Peak pressures within 1cm2 masks were determined for the hallux, first, central and fifth metatarsals (T1, M1, M2–4 and M5 respectively). Peak pressure (kPa) and loading duration (ms) for the hurdle, landing and recovery steps are reported as a percentage of the respective limb-matched values for between-hurdle steps. Results/discussion: For between-hurdle steps, T1, M1 and M2–4 peak pressures were 312/357, 356/306 and 362/368 kPa, lead/trail limbs respectively. For the hurdle, landing and recovery steps, pressures at T1 and M1 increased. For T1 the increases were in the order of 17%, 36% and 8% (hurdle, landing and recovery steps, respectively) while the corresponding increases at M1 were 7%, 54% and 20%. Pressures at M2–4 were similar for all steps, while M5 loaded erratically. For the between-hurdle steps, the loading durations at T1, M1 and M2–4, were 160/162, 170/142 and 190/191 ms, respectively. For the landing step, loading duration decreased for T1, M1and M2–4 (−8%, −19% and −18%, respectively). In the hurdle step, loading duration decreased for the metatarsals but not for T1. Conclusions: The hurdling action leads to regional pressure increases that act for shorter durations in comparison to the between-hurdle running steps. These changes are most notable at the first metatarsal, a common site of foot injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book within which this chapter appears is published as a research reference book (not a coursework textbook) on Management Information Systems (MIS) for seniors or graduate students in Chinese universities. It is hoped that this chapter, along with the others, will be helpful to MIS scholars and PhD/Masters research students in China who seek understanding of several central Information Systems (IS) research topics and related issues. The subject of this chapter - ‘Evaluating Information Systems’ - is broad, and cannot be addressed in its entirety in any depth within a single book chapter. The chapter proceeds from the truism that organizations have limited resources and those resources need to be invested in a way that provides greatest benefit to the organization. IT expenditure represents a substantial portion of any organization’s investment budget and IT related innovations have broad organizational impacts. Evaluation of the impact of this major investment is essential to justify this expenditure both pre- and post-investment. Evaluation is also important to prioritize possible improvements. The chapter (and most of the literature reviewed herein) admittedly assumes a blackbox view of IS/IT1, emphasizing measures of its consequences (e.g. for organizational performance or the economy) or perceptions of its quality from a user perspective. This reflects the MIS emphasis – a ‘management’ emphasis rather than a software engineering emphasis2, where a software engineering emphasis might be on the technical characteristics and technical performance. Though a black-box approach limits diagnostic specificity of findings from a technical perspective, it offers many benefits. In addition to superior management information, these benefits may include economy of measurement and comparability of findings (e.g. see Part 4 on Benchmarking IS). The chapter does not purport to be a comprehensive treatment of the relevant literature. It does, however, reflect many of the more influential works, and a representative range of important writings in the area. The author has been somewhat opportunistic in Part 2, employing a single journal – The Journal of Strategic Information Systems – to derive a classification of literature in the broader domain. Nonetheless, the arguments for this approach are believed to be sound, and the value from this exercise real. The chapter drills down from the general to the specific. It commences with a highlevel overview of the general topic area. This is achieved in 2 parts: - Part 1 addressing existing research in the more comprehensive IS research outlets (e.g. MISQ, JAIS, ISR, JMIS, ICIS), and Part 2 addressing existing research in a key specialist outlet (i.e. Journal of Strategic Information Systems). Subsequently, in Part 3, the chapter narrows to focus on the sub-topic ‘Information Systems Success Measurement’; then drilling deeper to become even more focused in Part 4 on ‘Benchmarking Information Systems’. In other words, the chapter drills down from Parts 1&2 Value of IS, to Part 3 Measuring Information Systems Success, to Part 4 Benchmarking IS. While the commencing Parts (1&2) are by definition broadly relevant to the chapter topic, the subsequent, more focused Parts (3 and 4) admittedly reflect the author’s more specific interests. Thus, the three chapter foci – value of IS, measuring IS success, and benchmarking IS - are not mutually exclusive, but, rather, each subsequent focus is in most respects a sub-set of the former. Parts 1&2, ‘the Value of IS’, take a broad view, with much emphasis on ‘the business Value of IS’, or the relationship between information technology and organizational performance. Part 3, ‘Information System Success Measurement’, focuses more specifically on measures and constructs employed in empirical research into the drivers of IS success (ISS). (DeLone and McLean 1992) inventoried and rationalized disparate prior measures of ISS into 6 constructs – System Quality, Information Quality, Individual Impact, Organizational Impact, Satisfaction and Use (later suggesting a 7th construct – Service Quality (DeLone and McLean 2003)). These 6 constructs have been used extensively, individually or in some combination, as the dependent variable in research seeking to better understand the important antecedents or drivers of IS Success. Part 3 reviews this body of work. Part 4, ‘Benchmarking Information Systems’, drills deeper again, focusing more specifically on a measure of the IS that can be used as a ‘benchmark’3. This section consolidates and extends the work of the author and his colleagues4 to derive a robust, validated IS-Impact measurement model for benchmarking contemporary Information Systems (IS). Though IS-Impact, like ISS, has potential value in empirical, causal research, its design and validation has emphasized its role and value as a comparator; a measure that is simple, robust and generalizable and which yields results that are as far as possible comparable across time, across stakeholders, and across differing systems and systems contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The buckling strength of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion for its intermediate spans. Recent research has developed a modified elastic lateral buckling moment equation to allow for lateral distortional buckling effects. However, it is limited to a uniform moment distribution condition that rarely exists in practice. Transverse loading introduces a non-uniform bending moment distribution, which is also often applied above or below the shear centre (load height). These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors to allow for these effects. But they were derived mostly based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The moment distribution and load height effects of transverse loading for LSBs, and the suitability of the current design modification factors to accommodate these effects for LSBs is not known. This paper presents the details of a research study based on finite element analyses on the elastic lateral buckling strength of simply supported LSBs subject to transverse loading. It discusses the suitability of the current steel design code modification factors, and provides suitable recommendations for simply supported LSBs subject to transverse loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The word “queer” is a slippery one; its etymology is uncertain, and academic and popular usage attributes conflicting meanings to the word. By the mid-nineteenth century, “queer” was used as a pejorative term for a (male) homosexual. This negative connotation continues when it becomes a term for homophobic abuse. In recent years, “queer” has taken on additional uses: as an all encompassing term for culturally marginalised sexualities – gay, lesbian, trans, bi, and intersex (“GLBTI”) – and as a theoretical strategy which deconstructs binary oppositions that govern identity formation. Tracing its history, the Oxford English Dictionary notes that the earliest references to “queer” may have appeared in the sixteenth century. These early examples of queer carried negative connotations such as “vulgar,” “bad,” “worthless,” “strange,” or “odd” and such associations continued until the mid-twentieth century. The early nineteenth century, and perhaps earlier, employed “queer” as a verb, meaning to “to put out of order,” “to spoil”, “to interfere with”. The adjectival form also began to emerge during this time to refer to a person’s condition as being “not normal,” “out of sorts” or to cause a person “to feel queer” meaning “to disconcert, perturb, unsettle.” According to Eve Sedgwick (1993), “the word ‘queer’ itself means across – it comes from the Indo-European root – twerkw, which also yields the German quer (traverse), Latin torquere (to twist), English athwart . . . it is relational and strange.” Despite the gaps in the lineage and changes in usage, meaning and grammatical form, “queer” as a political and theoretical strategy has benefited from its diverse origins. It refuses to settle comfortably into a single classification, preferring instead to traverse several categories that would otherwise attempt to stabilise notions of chromosomal sex, gender and sexuality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High Fashion is a practice-led research enquiry that examines the processes involved in producing a no-budget film of high aesthetic standards that can confidently compete in the global film festival market, and to reflect on the production techniques tested during the making of the film. The practical outcome of the research is a twenty-five minute short drama. It incorporates a large cast and crew, original designer clothing, extravagant sets, and a popular soundtrack. The thesis considers how over one hundred professionals volunteered their time, expertise, and equipment to help produce the film. The thesis also examines the many obstacles encountered while producing the film and how these were overcome. It is written for the student filmmaker as a guide to "learn by doing."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming technologies. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It has found increasing popularity in residential, industrial and commercial buildings as flexural members. The LSB is considerably lighter than traditional hot-rolled steel beams and provides both structural and construction efficiencies. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral defection, twist and cross sectional change due to web distortion. The current design rules in AS/NZS 4600 (SA, 2005) for flexural members subject to lateral distortional buckling were found to be conservative by about 8% in the inelastic buckling region. Therefore, a new design rule was developed for LSBs subject to lateral distortional buckling based on finite element analyses of LSBs. The effect of section geometry was then considered and several geometrical parameters were used to develop an advanced set of design rules. This paper presents the details of the finite element analyses and the design curve development for hollow flange sections subject to lateral distortional buckling.