9 resultados para Trudeau, Randy

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This current report, It’s About Time: Investing in Transportation to Keep Texas Economically Competitive, updates the February 2009 report by providing an enhanced analysis of the current state of the Texas transportation system, determining the household costs of under-investing in the system and identifying potential revenue options for funding the system. However, the general conclusion has not changed. There are tremendous needs and high costs associated with “doing nothing new.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

APPENDIX A : PAVEMENT QUALITY (Zhanmin Zhang, Michael R. Murphy, Robert Harrison), 7 pages -- APPENDIX B : BRIDGE QUALITY (Jose Weissmann, Angela J. Weissmann), 6 pages -- APPENDIX C : URBAN TRAFFIC CONGESTION (Tim Lomax, David Schrank), 32 pages -- APPENDIX D: RURAL CORRIDORS (Tim Lomax, David Schrank), 6 pages -- APPENDIX E: ADDITIONAL REVENUE SOURCE OPTIONS FOR PAVEMENT AND BRIDGE MAINTENANCE (Mike Murphy, Seokho Chi, Randy Machemehl, Khali Persad, Robert Harrison, Zhanmin Zhang), 81 pages -- APPENDIX F: FUNDING TRANSPORTATION IMPROVEMENTS (David Ellis, Brianne Glover, Nick Norboge, Wally Crittenden), 19 pages -- APPENDIX G: ESTIMATING VEHICLE OPERATING COSTS AND PAVEMENT DETERIORATION (by Robert Harrison), 4 pages

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives To review the effects of physical activity on health and behavior outcomes and develop evidence-based recommendations for physical activity in youth. Study design A systematic literature review identified 850 articles; additional papers were identified by the expert panelists. Articles in the identified outcome areas were reviewed, evaluated and summarized by an expert panelist. The strength of the evidence, conclusions, key issues, and gaps in the evidence were abstracted in a standardized format and presented and discussed by panelists and organizational representatives. Results Most intervention studies used supervised programs of moderate to vigorous physical activity of 30 to 45 minutes duration 3 to 5 days per week. The panel believed that a greater amount of physical activity would be necessary to achieve similar beneficial effects on health and behavioral outcomes in ordinary daily circumstances (typically intermittent and unsupervised activity). Conclusion School-age youth should participate daily in 60 minutes or more of moderate to vigorous physical activity that is developmentally appropriate, enjoyable, and involves a variety of activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Firstly, on behalf of the secretariat that has coordinated these meetings every two years since 1985, our thanks to the organising committee here at the University of Economics in Cracow, Poland, for hosting this conference. I was asked to offer comment on the research agenda. There are many famous names to refer to. Two Australian colleagues here today are Peter Dowling and Helen De Cieri, longtime stalwarts of the field of IHRM. I acknowledge their contributions over many years, along with Randy Schuler and Denise Welch, and Dennis Briscoe. Other names such as Rosalie Tung, Pawan Bhudwhar, Michael Morley, Paul Sparrow and Wayne Cascio are known to us all. Their books have become classics. One example is the 700 page benchmark 2012 work by Chris Brewster and Wolfgang Mayrhofer, Handbook of Research on Comparative Human Resource Management (Brewster & Mayrhofer, 2012). More recently, in a book published by Cambridge University press in 2014, Mustafa Özbilgin, Dimitria Groutsis and William Harvey offer students a very accessible overview of the basics in IHRM (Ozbilgin, Groutsis, & Harvey, 2014). As for a research agenda, there are excellent literature reviews to which I would refer you, such as those by people who over the years have been frequent participants at this conference (Tarique & Schuler, 2010), (Farndale, Scullion, & Sparrow, 2010), and (Scullion & Collings, 2011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm–BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR–Ras–MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR–Ras–MAPK signaling pathway, by affecting Mek levels during Drosophila development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.