38 resultados para Transmission X-ray microscopy
em Queensland University of Technology - ePrints Archive
Resumo:
The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3-D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, Transmission X-ray Microscopy (TXM), which makes it possible to investigate the internal structure and 3-D tomographic reconstruction of the smectite clay aggregates modified by Al13 keggin macro-molecule [Al13(O)4(OH)24(H2O)12 ]7+. Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation.
Resumo:
Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.
Resumo:
The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction. Here, we show the previously unknown phenomenon of a globular 3D superstructure within the dust fraction of regolith. A study using the recently developed Transmission X-ray Microscopy (TXM) with tomographic reconstruction reveals a highly porous network of cellular voids in the finest dust fraction aggregates in lunar soil. Such porous chained aggregates are composed of sub-micron particles that form a network of cellular voids a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of lunar topsoil enables a model of heat transfer to be constructed.
Resumo:
The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction in the outer-most topsoil layer. Here, we show the previously unknown phenomenon of building a globular 3-D superstructure within the dust fraction of the regolith. New technology, Transmission X-ray Microscopy (TXM) with tomographic reconstruction, reveals a highly porous network of cellular void system in the lunar finest dust fraction aggregates. Such porous chained aggregates are composed of sub-micron in size particles that build cellular void networks. Voids are a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of the lunar topsoil allow building a model of heat transfer which is discussed.
Resumo:
This thesis applies Monte Carlo techniques to the study of X-ray absorptiometric methods of bone mineral measurement. These studies seek to obtain information that can be used in efforts to improve the accuracy of the bone mineral measurements. A Monte Carlo computer code for X-ray photon transport at diagnostic energies has been developed from first principles. This development was undertaken as there was no readily available code which included electron binding energy corrections for incoherent scattering and one of the objectives of the project was to study the effects of inclusion of these corrections in Monte Carlo models. The code includes the main Monte Carlo program plus utilities for dealing with input data. A number of geometrical subroutines which can be used to construct complex geometries have also been written. The accuracy of the Monte Carlo code has been evaluated against the predictions of theory and the results of experiments. The results show a high correlation with theoretical predictions. In comparisons of model results with those of direct experimental measurements, agreement to within the model and experimental variances is obtained. The code is an accurate and valid modelling tool. A study of the significance of inclusion of electron binding energy corrections for incoherent scatter in the Monte Carlo code has been made. The results show this significance to be very dependent upon the type of application. The most significant effect is a reduction of low angle scatter flux for high atomic number scatterers. To effectively apply the Monte Carlo code to the study of bone mineral density measurement by photon absorptiometry the results must be considered in the context of a theoretical framework for the extraction of energy dependent information from planar X-ray beams. Such a theoretical framework is developed and the two-dimensional nature of tissue decomposition based on attenuation measurements alone is explained. This theoretical framework forms the basis for analytical models of bone mineral measurement by dual energy X-ray photon absorptiometry techniques. Monte Carlo models of dual energy X-ray absorptiometry (DEXA) have been established. These models have been used to study the contribution of scattered radiation to the measurements. It has been demonstrated that the measurement geometry has a significant effect upon the scatter contribution to the detected signal. For the geometry of the models studied in this work the scatter has no significant effect upon the results of the measurements. The model has also been used to study a proposed technique which involves dual energy X-ray transmission measurements plus a linear measurement of the distance along the ray path. This is designated as the DPA( +) technique. The addition of the linear measurement enables the tissue decomposition to be extended to three components. Bone mineral, fat and lean soft tissue are the components considered here. The results of the model demonstrate that the measurement of bone mineral using this technique is stable over a wide range of soft tissue compositions and hence would indicate the potential to overcome a major problem of the two component DEXA technique. However, the results also show that the accuracy of the DPA( +) technique is highly dependent upon the composition of the non-mineral components of bone and has poorer precision (approximately twice the coefficient of variation) than the standard DEXA measurements. These factors may limit the usefulness of the technique. These studies illustrate the value of Monte Carlo computer modelling of quantitative X-ray measurement techniques. The Monte Carlo models of bone densitometry measurement have:- 1. demonstrated the significant effects of the measurement geometry upon the contribution of scattered radiation to the measurements, 2. demonstrated that the statistical precision of the proposed DPA( +) three tissue component technique is poorer than that of the standard DEXA two tissue component technique, 3. demonstrated that the proposed DPA(+) technique has difficulty providing accurate simultaneous measurement of body composition in terms of a three component model of fat, lean soft tissue and bone mineral,4. and provided a knowledge base for input to decisions about development (or otherwise) of a physical prototype DPA( +) imaging system. The Monte Carlo computer code, data, utilities and associated models represent a set of significant, accurate and valid modelling tools for quantitative studies of physical problems in the fields of diagnostic radiology and radiography.
Resumo:
The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.
Resumo:
Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright
Resumo:
The Body Mass Index (BMI) has been used worldwide as an indicator of fatness. However, the universal cut-off points by the World Health Organisation (WHO) classification may not be appropriate for every ethnic group when consider the relationship with their actual total body fatness(%BF). The application of population-specific classifications to assess BMI may be more relevant to public health. Ethnic differences in the BMI%BF relationship between 45 Japanese and 42 Australian-Caucasian males were assessed using whole body dual-energy X-ray absorptiometry (DXA) scan and anthropometry using a standard protocol. Japanese males had significantly (p<0.05) greater %BF at given BMI values than Australian males. When this is taken into account the newly proposed Asia-Pacific BMI classification of BMI 23 as overweight and 25 as obese may better assess the level of obesity that is associated increased health risks for this population. To clarify the current findings, further studies that compare the relationships across other Japanese populations are recommended.
Resumo:
By using the Rasch model, much detailed diagnostic information is available to developers of survey and assessment instruments and to the researchers who use them. We outline an approach to the analysis of data obtained from the administration of survey instruments that can enable researchers to recognise and diagnose difficulties with those instruments and then to suggest remedial actions that can improve the measurement properties of the scales included in questionnaires. We illustrate the approach using examples drawn from recent research and demonstrate how the approach can be used to generate figures that make the results of Rasch analyses accessible to non-specialists.
Resumo:
Computer tomography has been used to image and reconstruct in 3-D an Egyptian mummy from the collection of the British Museum. This study of Tjentmutengebtiu, a priestess from the 22nd dynasty (945-715 BC) revealed invaluable information of a scientific, Egyptological and palaeopathological nature without mutilation and destruction of the painted cartonnage case or linen wrappings. Precise details on the removal of the brain through the nasal cavity and the viscera from the abdominal cavity were obtained. The nature and composition of the false eyes were investigated. The detailed analysis of the teeth provided a much closer approximation of age at death. The identification of materials used for the various amulets including that of the figures placed in the viscera was graphically demonstrated using this technique.
Resumo:
X-ray computed tomography (CT) is a medical imaging technique that produces images of trans-axial planes through the human body. When compared with a conventional radiograph, which is an image of many planes superimposed on each other, a CT image exhibits significantly improved contrast although this is at the expense of reduced spatial resolution.----- A CT image is reconstructed mathematically from a large number of one dimensional projections of the chosen plane. These projections are acquired electronically using a linear array of solid-state detectors and an x ray source that rotates around the patient.----- X-ray computed tomography is used routinely in radiological examinations. It has also be found to be useful in special applications such as radiotherapy treatment planning and three-dimensional imaging for surgical planning.