428 resultados para Thrombosis Genetic aspects

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared physical and genetic maps of the region around the legJ gene in pea. In this vicinity there are four B-type legumin genes, arranged as two close pairs. The detection of a recombination event within this gene cluster allows the orientation of this group of genes within the surrounding linkage group to be determined. The relationship between physical and genetic distances in this region is discussed, as are the implications of this for relating physical and genetic maps elsewhere in the pea genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While twin studies have previously demonstrated high heritability of susceptibility to ankylosing spondylitis (AS), it is only recently that the involvement of genetic factors in determining the severity of the disease has been demonstrated. The genes involved in determining the rate of ankylosis in AS are likely to be different from those involved in the underlying immunologic events, and represent important potential targets for treatment of AS. This article will describe the progress that has been made in the genetic epidemiology of AS, and in identifying the genes involved.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous genetic and acquired factors are appreciated as risk factors for venous thromboembolism (VTE) [1,2], only recently have male gender [3,4], dyslipoproteinemia [5], and silent atherosclerotic vascular disease [6] been linked to VTE. We recently found that high-density lipoprotein (HDL) deficiency is a key feature of a pattern of dyslipoproteinemia that is associated with VTE in males, and we found that the common TaqI B1 variation in the cholesteryl ester transfer protein (CETP) gene is significantly linked to VTE [5]. However, the TaqI B1/B2 single nucleotide polymorphism (SNP) itself is unlikely to affect directly CETP activity, but it is linked to nonsynonymous CETP SNPs Ala373Pro and Arg451Gln [7–9]. Here, we demonstrate that these two CETP variations are associated with VTE and low plasma HDL levels in males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia. (C) 2000 Lippincott Williams and Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent decision of Waller v James involved a claim by the plaintiff parents for damages for wrongful birth against the defendant doctor, Dr James, a gynaecologist with a practice in infertility and IVF procedures, who had been consulted by the plaintiffs. The second plaintiff, Mr Waller suffered an inherited anti-thrombin deficiency (ATD), a condition which results in a propensity for the blood to clot, at least in adults. Dr James subsequently recommended IVF treatment. The first plaintiff, Mrs Waller became pregnant after the first cycle of IVF treatment. Her son Keeden was born on 10 August 2000 with a genetic anti-thrombin deficiency. Keeden was released from hospital on 14 August 2000. However, he was brought back to the hospital the next day with cerebral thrombosis (CSVT). As a result of the thrombosis, he suffered permanent brain damage, cerebral palsy and related disabilities. The plaintiffs alleged that the defendant was in breach of contract and his common law duty of care to the plaintiffs in failing to inform them, or cause them to be informed, of the hereditary aspects of ATD. They further alleged that, had they been properly informed, they would not have proceeded to conceive a child using the male plaintiff’s sperm and therefore avoided the harm that had befallen them. The plaintiffs claimed damages to compensate them for their losses, including psychiatric and physical injuries and the costs of having, raising and caring for Keeden. The defendant was held to be not liable in negligence by Justice Hislop of the Supreme Court of New South Wales because a finding was made on medical causation which was adverse to the plaintiffs claim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter- and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3). Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.