149 resultados para Thin circulars
em Queensland University of Technology - ePrints Archive
Resumo:
The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.
Resumo:
Objects have consequences, seemingly. They move, atomic, formlessly – when static they are seen. That they vibrate constantly, that they are NOW present, is something we will have to trust the physicists on. They only seem here. Now is their moment of form, but later, who knows? Things SEEM when we recognise our own transience and temporary-ness. We call upon a bevy of senses that forever frustrate us with their limitation, despite our little understanding of what we actually have – is this here? So some forms seem to be telling us to trust our senses – that this world IS as it seems. Their form constantly refines and is refined and refined until in its essentialness it cannot be doubted – it absolutely IS. Is this our eyes? Can we only see it? But light is also a particle, if I remember correctly, so there is some weight to seeing. So to SEEM is also to FEEL,as this light imposes its visual weight upon our skins – we see with every pore of our body.
Resumo:
Purpose: Worldwide, the incidence of thick melanoma has not declined, and the nodular melanoma (NM) subtype accounts for nearly 40% of newly-diagnosed thick melanoma. To assess differences between patients with thin (≤2.00 mm) and thick (≥2.01 mm) nodular melanoma, we evaluated factors such as demographics, melanoma detection patterns, tumor visibility, and physician screening for NM alone and compared clinical presentation and anatomic location of NM with superficial spreading melanoma (SSM). Methods We utilized data from a large population-based study of Queensland (Australia) residents diagnosed with melanoma. Queensland residents aged 20 to 75 years with histologically confirmed first primary invasive cutaneous melanoma were eligible for the study, and all questionnaires were conducted by telephone (response rate 77.9%). Results During this four-year period, 369 patients with nodular melanoma were interviewed, of whom 56.7% were diagnosed with tumors ≤ 2.00 mm. Men, older individuals, and those who had not been screened by a physician in the past three years were more likely to have nodular tumors of greater thickness. Thickest nodular melanoma (4 mm+) was also most common in persons who had not been screened by a doctor within the past three years (OR 3.75; 95% CI 1.47-9.59). Forty-six percent of patients with thin nodular melanoma (≤ 2.00 mm) reported a change in color, compared with 64% of patients with thin SSM and 26% of patients with thick nodular melanoma (>2.00 mm). Conclusion Awareness of factors related to earlier detection of potentially fatal nodular melanomas, including the benefits of a physician examination, should be useful in enhancing public and professional education strategies. Particular awareness of clinical warning signs associated with thin nodular melanoma should allow for more prompt diagnosis and treatment of this subtype.
Resumo:
A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.
Resumo:
Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.
Resumo:
This poem anticipates the feelings generated by age and lingering illness – a sense of mental as well as physical wasting, and a gradual detachment from the world, becoming almost insubstantial. It is an attempt at empathy with my father during the months leading up to his death from pancreatic cancer, during which his physical changes were paralleled by the relinquishment of his plans, intentions and hopes.
Resumo:
This thesis presents a study of the mechanical properties of thin films. The main aim was to determine the properties of sol-gel derived coatings. These films are used in a range of different applications and are known to be quite porous. Very little work has been carried out in this area and in order to study the mechanical properties of sol-gel films, some of the work was carried out on magnetron sputtered metal coatings in order to validate the techniques developed in this work. The main part of the work has concentrated on the development of various bending techniques to study the elastic modulus of the thin films, including both a small scale three-point bending, as well as a novel bi-axial bending technique based on a disk resting on three supporting balls. The bending techniques involve a load being applied to the sample being tested and the bending response to this force being recorded. These experiments were carried out using an ultra micro indentation system with very sensitive force and depth recording capabilities. By analysing the result of these forces and deflections using existing theories of elasticity, the elastic modulus may be determined. In addition to the bi-axial bending study, a finite element analysis of the stress distribution in a disk during bending was carried out. The results from the bi-axial bending tests of the magnetron sputtered films was confirmed by ultra micro indentation tests, giving information of the hardness and elastic modulus of the films. It was found that while the three point bending method gave acceptable results for uncoated steel substrates, it was very susceptible to slight deformations of the substrate. Improvements were made by more careful preparation of the substrates in order to avoid deformation. However the technique still failed to give reasonable results for coated specimens. In contrast, biaxial bending gave very reliable results even for very thin films and this technique was also found to be useful for determination of the properties of sol-gel coatings. In addition, an ultra micro indentation study of the hardness and elastic modulus of sol-gel films was conducted. This study included conventionally fired films as well as films ion implanted in a range of doses. The indentation tests showed that for implantation of H+ ions at doses exceeding 3x1016 ions/cm2, the mechanical properties closely resembled those of films that were conventionally fired to 450°C.