192 resultados para Statistic process control

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper focuses on some interesting classes of process-control games, where winning essentially means successfully controlling the process. A master for one of these games is an agent who plays a winning strategy. In this paper we investigate situations in which even a complete model (given by a program) of a particular game does not provide enough information to synthesize—even incrementally—a winning strategy. However, if in addition to getting a program, a machine may also watch masters play winning strategies, then the machine is able to incrementally learn a winning strategy for the given game. Studied are successful learning from arbitrary masters and from pedagogically useful selected masters. It is shown that selected masters are strictly more helpful for learning than are arbitrary masters. Both for learning from arbitrary masters and for learning from selected masters, though, there are cases where one can learn programs for winning strategies from masters but not if one is required to learn a program for the master's strategy itself. Both for learning from arbitrary masters and for learning from selected masters, one can learn strictly more by watching m+1 masters than one can learn by watching only m. Last, a simulation result is presented where the presence of a selected master reduces the complexity from infinitely many semantic mind changes to finitely many syntactic ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compressed gas industry and government agencies worldwide utilize "adiabatic compression" testing for qualifying high-pressure valves, regulators, and other related flow control equipment for gaseous oxygen service. This test methodology is known by various terms including adiabatic compression testing, gaseous fluid impact testing, pneumatic impact testing, and BAM testing as the most common terms. The test methodology will be described in greater detail throughout this document but in summary it consists of pressurizing a test article (valve, regulator, etc.) with gaseous oxygen within 15 to 20 milliseconds (ms). Because the driven gas1 and the driving gas2 are rapidly compressed to the final test pressure at the inlet of the test article, they are rapidly heated by the sudden increase in pressure to sufficient temperatures (thermal energies) to sometimes result in ignition of the nonmetallic materials (seals and seats) used within the test article. In general, the more rapid the compression process the more "adiabatic" the pressure surge is presumed to be and the more like an isentropic process the pressure surge has been argued to simulate. Generally speaking, adiabatic compression is widely considered the most efficient ignition mechanism for directly kindling a nonmetallic material in gaseous oxygen and has been implicated in many fire investigations. Because of the ease of ignition of many nonmetallic materials by this heating mechanism, many industry standards prescribe this testing. However, the results between various laboratories conducting the testing have not always been consistent. Research into the test method indicated that the thermal profile achieved (i.e., temperature/time history of the gas) during adiabatic compression testing as required by the prevailing industry standards has not been fully modeled or empirically verified, although attempts have been made. This research evaluated the following questions: 1) Can the rapid compression process required by the industry standards be thermodynamically and fluid dynamically modeled so that predictions of the thermal profiles be made, 2) Can the thermal profiles produced by the rapid compression process be measured in order to validate the thermodynamic and fluid dynamic models; and, estimate the severity of the test, and, 3) Can controlling parameters be recommended so that new guidelines may be established for the industry standards to resolve inconsistencies between various test laboratories conducting tests according to the present standards?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explored the development of statistical methods to support the monitoring and improvement in quality of treatment delivered to patients undergoing coronary angioplasty procedures. To achieve this goal, a suite of outcome measures was identified to characterise performance of the service, statistical tools were developed to monitor the various indicators and measures to strengthen governance processes were implemented and validated. Although this work focused on pursuit of these aims in the context of a an angioplasty service located at a single clinical site, development of the tools and techniques was undertaken mindful of the potential application to other clinical specialties and a wider, potentially national, scope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service processes such as financial advice, booking a business trip or conducting a consulting project have emerged as units of analysis of high interest for the business process and service management communities in practice and academia. While the transactional nature of production processes is relatively well understood and deployed, the less predictable and highly interactive nature of service processes still lacks in many areas appropriate methodological grounding. This paper proposes a framework of a process laboratory as a new IT artefact in order to facilitate the holistic analysis and simulation of such service processes. Using financial services as an example, it will be shown how such a process laboratory can be used to reduce the complexity of service process analysis and facilitate operational service process control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ISSCT Process Section workshop held in Réunion 20–23 October 2008 was attended by 51 delegates from 10 countries. The theme was Green cane impact on sugar processing. The workshop provided a valuable and timely opportunity to review and discuss the impact on factory operations and performance from a green cane supply that could include significant levels of trash. It was particularly relevant to those mills that were considering options to boost their biomass intake for increased co-generation capacity. Several of the speakers related their experiences with processing ‘whole of crop’ cane supplies through the factory. Speakers detailed the problems and increased losses that were incurred when processing cane with high trash levels. The consensus of the delegates was that the best scenario would involve a cane-cleaning plant at the factory so that only clean cane would be processed through the factory. The forum recommended that more research was required to address the issues of increased impurities in the process streams associated with high trash levels. Site visits to the two factories and a cane-delivery station were arranged as part of the workshop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.