78 resultados para Sodium sulfate
em Queensland University of Technology - ePrints Archive
Resumo:
The SER spectra of riboflavin and FAD are identical and are resonance enhanced at 514 or 532 nm. Signals from FAD/ riboflavin dominated SER spectra whenever these compounds were present with proteins or bacteria. SER spectra of very different bacteria such as Pseudomonas. aeruginosa, Bacillu. subtilis and Geobacillus. stearothermophilus were dominated by signals from FAD, even when these bacteria were added to a preformed colloid. The SERS signal of FAD is greatly reduced at 785 nm, and SER spectra of bacteria excited at 785 nm are quite different than those collected at 514 or 532 nm. This supports the assignment of the peaks in the 514 nm SER spectra of bacteria to FAD rather to amino acids or N-acetylglucosamine. The SER spectra of certain mixes of adenine and FAD showed similar changes to those of bacteria when the excitation was changed from 514/532 nm to 785 nm. The ratio of colloid: bacteria was of critical important for obtaining good SER spectra, and the addition of sodium sulfate was also beneficial. Removal of EPS from bacteria before analysis facilitated interaction with the silver surface, and may be a useful step to include in identification protocols.
Resumo:
The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.
Resumo:
The title compound catena-poly[aqua-mu3-2-nitrocinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitrocinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octahedral NaO6 centres comprising three facially-related monodentate carboxylate O-atom donors from separate ligands (all bridging)[Na-O, 2.4370(13)-2.5046(13)A] and three water molecules (two bridging, one monodentate) [Na-O, 2.3782(13)-2.4404(17)A]. The structure is also stabilized by intra-chain water-O-H...O(carboxylate) and O-H...O(nitro) hydrogen bonds.
Resumo:
A simple mimetic of a heparan sulfate disaccharide sequence that binds to the growth factors FGF-1 and FGF-2 was synthesized by coupling a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor with a 1,6-anhydro-2-azido-2-deoxy--D-glucose acceptor. Both the donor and acceptor were obtained from a common intermediate readily obtained from D-glucal. Molecular docking calculations showed that the predicted locations of the disaccharide sulfo groups in the binding site of FGF-1 and FGF-2 are similar to the positions observed for co-crystallized heparin-derived oligosaccharides obtained from published crystal structures.
Resumo:
Heparan sulfate mimetics, which we have called the PG500 series, have been developed to target the inhibition of both angiogenesis and heparanase activity. This series extends the technology underpinning PI-88, a mixture of highly sulfated oligosaccharides which reached Phase III clinical development for hepatocellular carcinoma. Advances in the chemistry of the PG500 series provide numerous advantages over PI-88. These new compounds are fully sulfated, single entity oligosaccharides attached to a lipophilic moiety, which have been optimized for drug development. The rational design of these compounds has led to vast improvements in potency compared to PI-88, based on in vitro angiogenesis assays and in vivo tumor models. Based on these and other data, PG545 has been selected as the lead clinical candidate for oncology and is currently undergoing formal preclinical development as a novel treatment for advanced cancer.
Resumo:
A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.
Resumo:
The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.
Resumo:
The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.
Resumo:
This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.
Resumo:
Dynamic and controlled rate thermal analysis (CRTA) has been used to characterise alunites of formula [M(Al)3(SO4)2(OH)6 ] where M+ is the cations K+, Na+ or NH4+. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation.
Resumo:
Background Interdialytic weight gain (IDWG) can be reduced by lowering the dialysate sodium concentration ([Na]) in haemodialysis patients. It has been assumed that this is because thirst is reduced, although this has been difficult to prove. We compared thirst patterns in stable haemodialysis patients with high and low IDWG using a novel technique and compared the effect of low sodium dialysis (LSD) with normal sodium dialysis (NSD). Methods Eight patients with initial high IDWG and seven with low IDWG completed hourly visual analogue ratings of thirst using a modified palmtop computer during the dialysis day and the interdialytic day. The dialysate [Na] was progressively reduced by up to 5 mmol/l over five treatments. Dialysis continued at the lowest attained [Na] for 2 weeks and the measurements were repeated. The dialysate [Na] then returned to baseline and the process was repeated. Results Baseline interdialytic day mean thirst was higher than the dialysis day mean for the high IDWG group (49.9±14.0 vs 36.2±16.6) and higher than the low weight gain group (49.9±14.0 vs 34.1±14.6). This trend persisted on LSD, but there was a pronounced increase in post-dialysis thirst scores for both groups (high IDWG: 46±13 vs 30±21; low IDWG: 48±24 vs 33±18). The high IDWG group demonstrated lower IDWG during LSD than NSD (2.23±0.98 vs 2.86±0.38 kg; P<0.05). Conclusions Our results indicate that patients with high IDWG experience more intense feelings of thirst on the interdialytic day. LSD reduces their IDWG, but paradoxically increases thirst in the immediate post-dialysis period.
Resumo:
Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.