101 resultados para Smoke opacity
em Queensland University of Technology - ePrints Archive
Resumo:
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.
Resumo:
Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.
Resumo:
This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.
Resumo:
This study describes a field experiment assessing the effectiveness of education and technological innovation in reducing air pollution generated by domestic wood heaters. Two-hundred and twenty four households from a small regional center in Australia were randomly assigned to one of four experimental conditions: (1) Education only – households received a wood smoke reduction education pack containing information about the negative health impacts of wood smoke pollution, and advice about wood heater operation and firewood management; (2) SmartBurn only – households received a SmartBurn canister designed to improve combustion and help wood fires burn more efficiently, (3) Education and SmartBurn, and (4) neither Education nor SmartBurn (control). Analysis of covariance, controlling for pre-intervention household wood smoke emissions, wood moisture content, and wood heater age, revealed that education and SmartBurn were both associated with significant reduction in wood smoke emissions during the post-intervention period. Follow-up mediation analyses indicated that education reduced emissions by improving wood heater operation practices, but not by increasing health risk perceptions. As predicted, SmartBurn exerted a direct effect on emission levels, unmediated by wood heater operation practices or health risk perceptions.
Resumo:
This study applied the affect heuristic model to investigate key psychological factors (affective associations, perceived benefits, and costs of wood heating) contributing to public support for three distinct types of wood smoke mitigation policies: education, incentives, and regulation. The sample comprised 265 residents of Armidale, an Australian regional community adversely affected by winter wood smoke pollution. Our results indicate that residents with stronger positive affective associations with wood heating expressed less support for wood smoke mitigation policies involving regulation. This relationship was fully mediated by expected benefits and costs associated with wood heating. Affective associations were unrelated to public support for policies involving education and incentives, which were broadly endorsed by all segments of the community, and were more strongly associated with rational considerations. Latent profile analysis revealed no evidence to support the proposition that some community members experience internal “heart versus head” conflicts in which their positive affective associations with wood heating would be at odds with their risk judgments about the dangers of wood smoke pollution. Affective associations and cost/benefit judgments were very consistent with each other.
Resumo:
The 2014 World Cancer Report, issued by the World Health Organisation (WHO), indicates that the number of new cancer cases has reached an all-time high. On the 19 May 2014, Dr Margaret Chan, the Director-General of the WHO, gave a stirring speech to the 67th Health Assembly on the heavy health burden associated with cancer. Chan was particularly interested in public health measures designed to combat the global tobacco epidemic...
Resumo:
In the case of industrial relations research, particularly that which sets out to examine practices within workplaces, the best way to study this real-life context is to work for the organisation. Studies conducted by researchers working within the organisation comprise some of the (broad) field’s classic research (cf. Roy, 1954; Burawoy, 1979). Participant and non-participant ethnographic research provides an opportunity to investigate workplace behaviour beyond the scope of questionnaires and interviews. However, we suggest that the data collected outside a workplace can be just as important as the data collected inside the organisation’s walls. In recent years the introduction of anti-smoking legislation in Australia has meant that people who smoke cigarettes are no longer allowed to do so inside buildings. Not only are smokers forced outside to engage in their habit, but they have to smoke prescribed distances from doorways, or in some workplaces outside the property line. This chapter considers the importance of cigarette-smoking employees in ethnographic research. Through data collected across three separate research projects, the chapter argues that smokers, as social outcasts in the workplace, can provide a wealth of important research data. We suggest that smokers also appear more likely to provide stories that contradict the ‘management’ or ‘organisational’ position. Thus, within the haze of smoke, researchers can uncover a level of discontent with the ‘corporate line’ presented inside the workplace. There are several aspects to the increased propensity of smokers to provide a contradictory or discontented story. It may be that the researcher is better able to establish a rapport with smokers, as there is a removal of the artificial wall a researcher presents as an outsider. It may also be that a research location physically outside the boundaries of the organisation provides workers with the freedom to express their discontent. The authors offer no definitive answers; rather, this chapter is intended to extend our knowledge of workplace research through highlighting the methodological value in using smokers as research subjects. We present the experience of three separate case studies where interactions with cigarette smokers have provided either important organisational data or alternatively a means of entering what Cunnison (1966) referred to as the ‘gossip circle’. The final section of the chapter draws on the evidence to demonstrate how the community of smokers, as social outcasts, are valuable in investigating workplace issues. For researchers and practitioners, these social outcasts may very well prove to be an important barometer of employee attitudes; attitudes that perhaps cannot be measured through traditional staff surveys.