119 resultados para Simulation Design
em Queensland University of Technology - ePrints Archive
An investigation of the validity of the MMPI-2 Response Bias Scale using an analog simulation design
Resumo:
As an emerging research method that has showed promising potential in several research disciplines, simulation received relatively few attention in information systems research. This paper illustrates a framework for employing simulation to study IT value cocreation. Although previous studies identified factors driving IT value cocreation, its underlying process remains unclear. Simulation can address this limitation through exploring such underlying process with computational experiments. The simulation framework in this paper is based on an extended NK model. Agent-based modeling is employed as the theoretical basis for the NK model extensions.
Resumo:
This paper presents a retrospective view of a game design practice that recently switched from the development of complex learning games to the development of simple authoring tools for students to design their own learning games for each other. We introduce how our ‘10% Rule’, a premise that only 10% of what is learnt during a game design process is ultimately appreciated by the player, became a major contributor to the evolving practice. We use this rule primarily as an analytical and illustrative tool to discuss the learning involved in designing and playing learning games rather than as a scientifically and empirically proven rule. The 10% rule was promoted by our experience as designers and allows us to explore the often overlooked and valuable learning processes involved in designing learning games and mobile games in particular. This discussion highlights that in designing mobile learning games, students are not only reflecting on their own learning processes through setting up structures for others to enquire and investigate, they are also engaging in high-levels of independent inquiry and critical analysis in authentic learning settings. We conclude the paper with a discussion of the importance of these types of learning processes and skills of enquiry in 21st Century learning.
Resumo:
Farm It Right is an innovative creative work that simulates sustainable farming techniques using ecological models prepared by academics at Bradford University (School of Life Sciences). This interactive work simulates the farming conditions and options of our ancestors and demonstrates the direct impact their actions had on their environment and on the ’future of their cultures’ (Schmidt 2008). Specifically, the simulation allows users to explore and experiment with the complex relationships between environmental factors and human decision making within the harsh conditions of an early (9th century) Nordic farm. The simulation interface displays both statistical and graphical feedback in response to the users selections regarding animal reproduction rates, shelter provisions, food supplies etc. as well as demonstrating resulting impacts to soil erosion, water supply, animal population sizes etc.---------- 'Farm It Right' is now used at Bradford University (School of Life Sciences) as a dynamic e-Learning resource for incorporating environmental archaeology with sustainable development education, improving the engagement with complex data and the appreciation of human impacts on the environment and the future of their cultures. 'Farm It Right' is also demonstrated as an exemplar case study for interaction design students at Queensland University of Technology.
Resumo:
Custom designed for display on the Cube Installation situated in the new Science and Engineering Centre (SEC) at QUT, the ECOS project is a playful interface that uses real-time weather data to simulate how a five-star energy building operates in climates all over the world. In collaboration with the SEC building managers, the ECOS Project incorporates energy consumption and generation data of the building into an interactive simulation, which is both engaging to users and highly informative, and which invites play and reflection on the roles of green buildings. ECOS focuses on the principle that humans can have both a positive and negative impact on ecosystems with both local and global consequence. The ECOS project draws on the practice of Eco-Visualisation, a term used to encapsulate the important merging of environmental data visualization with the philosophy of sustainability. Holmes (2007) uses the term Eco-Visualisation (EV) to refer to data visualisations that ‘display the real time consumption statistics of key environmental resources for the goal of promoting ecological literacy’. EVs are commonly artifacts of interaction design, information design, interface design and industrial design, but are informed by various intellectual disciplines that have shared interests in sustainability. As a result of surveying a number of projects, Pierce, Odom and Blevis (2008) outline strategies for designing and evaluating effective EVs, including ‘connecting behavior to material impacts of consumption, encouraging playful engagement and exploration with energy, raising public awareness and facilitating discussion, and stimulating critical reflection.’ Consequently, Froehlich (2010) and his colleagues also use the term ‘Eco-feedback technology’ to describe the same field. ‘Green IT’ is another variation which Tomlinson (2010) describes as a ‘field at the juncture of two trends… the growing concern over environmental issues’ and ‘the use of digital tools and techniques for manipulating information.’ The ECOS Project team is guided by these principles, but more importantly, propose an example for how these principles may be achieved. The ECOS Project presents a simplified interface to the very complex domain of thermodynamic and climate modeling. From a mathematical perspective, the simulation can be divided into two models, which interact and compete for balance – the comfort of ECOS’ virtual denizens and the ecological and environmental health of the virtual world. The comfort model is based on the study of psychometrics, and specifically those relating to human comfort. This provides baseline micro-climatic values for what constitutes a comfortable working environment within the QUT SEC buildings. The difference between the ambient outside temperature (as determined by polling the Google Weather API for live weather data) and the internal thermostat of the building (as set by the user) allows us to estimate the energy required to either heat or cool the building. Once the energy requirements can be ascertained, this is then balanced with the ability of the building to produce enough power from green energy sources (solar, wind and gas) to cover its energy requirements. Calculating the relative amount of energy produced by wind and solar can be done by, in the case of solar for example, considering the size of panel and the amount of solar radiation it is receiving at any given time, which in turn can be estimated based on the temperature and conditions returned by the live weather API. Some of these variables can be altered by the user, allowing them to attempt to optimize the health of the building. The variables that can be changed are the budget allocated to green energy sources such as the Solar Panels, Wind Generator and the Air conditioning to control the internal building temperature. These variables influence the energy input and output variables, modeled on the real energy usage statistics drawn from the SEC data provided by the building managers.
Resumo:
Due to the increasing energy demand and global warming effects, energy efficient buildings have become increasingly important in the modern construction industry. This research is conducted to evaluate the energy performance, financial feasibility and potential energy savings of zero energy houses. Through the use of building computer simulation technique, a 5 stars energy rated house was modelled and validated by comparing the energy performance of a base case scenario to a typical house in Brisbane. By integrating energy reduction strategies and utilizing onsite renewable energy such as solar energy, zero energy performance is achieved. It is found that approximately 66 % energy savings can be achieved in the household annual energy usage by focusing on maximizing the thermal performance of building envelope, minimizing the energy requirements and incorporating solar energy technologies.
Resumo:
This thesis is to establish a framework to guide the development of a simulated, multimedia-enriched, immersive, learning environment (SMILE) framework. This framework models essential media components used to describe a scenario applied in healthcare (in a dementia context), demonstrates interactions between the components, and enables scalability of simulation implementation. The thesis outcomes also include a simulation system developed in accordance with the guidance framework and a preliminary evaluation through a user study involving ten nursing students and practicioners. The results show that the proposed framework is feasible and effective for designing a simulation system in dementia healthcare training.
Resumo:
SCAPE is an interactive simulation that allows teachers and students to experiment with sustainable urban design. The project is based on the Kelvin Grove Urban Village, Brisbane. Groups of students role play as political, retail, elderly, student, council and builder characters to negotiate on game decisions around land use, density, housing types and transport in order to design a sustainable urban community. As they do so, the 3D simulation reacts in real time to illustrate what the village would look like as well as provide statistical information about the community they are creating. SCAPE brings together education, urban professional and technology expertise, helping it achieve educational outcomes, reflect real-world scenarios and include sophisticated logic and decision making processes and effects.---------- The research methodology was primarily practice led underpinned by action research methods resulting in innovative approaches and techniques in adapting digital games and simulation technologies to create dynamic and engaging experiences in pedagogical contexts. It also illustrates the possibilities for urban designers to engage a variety of communities in the processes, complexities and possibilities of urban development and sustainability.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.
Resumo:
Nursing training for an Intensive Care Unit (ICU) is a resource intensive process. High demands are made on staff, students and physical resources. Interactive, 3D computer simulations, known as virtual worlds, are increasingly being used to supplement training regimes in the health sciences; especially in areas such as complex hospital ward processes. Such worlds have been found to be very useful in maximising the utilisation of training resources. Our aim is to design and develop a novel virtual world application for teaching and training Intensive Care nurses in the approach and method for shift handover, to provide an independent, but rigorous approach to teaching these important skills. In this paper we present a virtual world simulator for students to practice key steps in handing over the 24/7 care requirements of intensive care patients during the commencing first hour of a shift. We describe the modelling process to provide a convincing interactive simulation of the handover steps involved. The virtual world provides a practice tool for students to test their analytical skills with scenarios previously provided by simple physical simulations, and live on the job training. Additional educational benefits include facilitation of remote learning, high flexibility in study hours and the automatic recording of a reviewable log from the session. To the best of our knowledge, we believe this is a novel and original application of virtual worlds to an ICU handover process. The major outcome of the work was a virtual world environment for training nurses in the shift handover process, designed and developed for use by postgraduate nurses in training.
Resumo:
In recent years, the advent of new tools for musculoskeletal simulation has increased the potential for significantly improving the ergonomic design process and ergonomic assessment of design. In this paper we investigate the use of one such tool, ‘The AnyBody Modeling System’, applied to solve a one-parameter and yet, complex ergonomic design problem. The aim of this paper is to investigate the potential of computer-aided musculoskeletal modelling in the ergonomic design process, in the same way as CAE technology has been applied to engineering design.
Resumo:
When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.