77 resultados para Semiconductors amorfs

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion–crystallization process and the final morphology of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

π-Conjugated polymers are the most promising semiconductor materials to enable printed organic thin film transistors (OTFTs) due to their excellent solution processability and mechanical robustness. However, solution-processed polymer semiconductors have shown poor charge transport properties mainly originated from the disordered polymer chain packing in the solid state as compared to the thermally evaporated small molecular organic semiconductors. The low charge carrier mobility, typically < 0.1 cm2 /V.s, of polymer semiconductors poses a challenge for most intended applications such as displays and radio-frequency identification (RFID) tags. Here we present our recent results on the dike topyrrolopyrrole (DPP)-based polymers and demonstrate that when DPP is combined with appropriate electron donating moieties such as thiophene and thienothiophene, very high charge carrier mobility values of ~1 cm2/V.s could be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular ordering of organic semiconductors is the key factor defining their electrical characteristics. Yet, it is extremely difficult to control, particularly at the interface with metal and dielectric surfaces in semiconducting devices. We have explored the growth of n-type semiconducting films based on hydrogen-bonded monoalkylnaphthalenediimide (NDI-R) from solution and through vapor deposition on both conductive and insulating surfaces. We combined scanning tunneling and atomic force microscopies with X-ray diffraction analysis to characterize, at the submolecular level, the evolution of the NDI-R molecular packing in going from monolayers to thin films. On a conducting (graphite) surface, the first monolayer of NDI-R molecules adsorbs in a flat-lying (face-on) geometry, whereas in subsequent layers the molecules pack edge-on in islands (Stranski–Krastanov-like growth). On SiO2, the NDI-R molecules form into islands comprising edge-on packed molecules (Volmer–Weber mode). Under all the explored conditions, self-complementary H bonding of the imide groups dictates the molecular assembly. The measured electron mobility of the resulting films is similar to that of dialkylated NDI molecules without H bonding. The work emphasizes the importance of H bonding interactions for controlling the ordering of organic semiconductors, and demonstrates a connection between on-surface self-assembly and the structural parameters of thin films used in electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the production of free-standing thin sheets made up of mass-produced ZnO nanowires and the application of these nanowire sheets for the fabrication of ZnO/organic hybrid light-emitting diodes in the manner of assembly. Different p-type organic semiconductors are used to form heterojunctions with the ZnO nanowire film. Electroluminescence measurements of the devices show UV and visible emissions. Identical strong red emission is observed independent of the organic semiconductor materials used in this work. The visible emissions corresponding to the electron transition between defect levels within the energy bandgap of ZnO are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatially resolved cathodoluminescence (CL) study of a ZnO nanonail, having thin shank, tapered neck, and hexagonal head sections, is reported. Monochromatic imaging and line scan profiling indicate that the wave guiding and leaking from growth imperfections in addition to the oxygen deficiency variation determine the spatial contrast of CL emissions. Occurrence of resonance peaks at identical wavelengths regardless of CL-excitation spots is inconsistent with the whispering-gallery mode (WGM) resonances of a two-dimensional cavity in the finite difference time domain simulation. However, three dimensioanl cavity simulation produced WGM peaks that are consistent with the experimental spectra, including transverse-electric resonances that are comparable to transverse-magnetic ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have grown defect-rich ZnO nanowires on a large scale by the vapour phase reaction method without using any metal catalyst and vacuum system. The defects, including zinc vacancies, oxygen interstitials and oxygen antisites, are related to the excess of oxygen in ZnO nanowires and are controllable. The nanowires having high excess of oxygen exhibit a brown-colour photoluminescence, due to the dominant emission band composed by violet, blue and green emissions. Those having more balanced Zn and O show a dominant green emission, giving rise to a green colour under UV light illumination. By O2-annealing treatment the violet luminescence after the band-edge emission UV peak can be enhanced for as-grown nanowires. However, the green emission shows different changing trends under O2-annealing treatment, associated with the excess of oxygen in the nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bending and bundling was observed from vertically aligned arrays of ZnO nanowires with flat (0001) top surfaces, which were synthesized using a vapor-phase method without metal catalysts. Sufficient evidence was found to exclude electron-beam bombardment during scanning electron microscopy as a cause for bending and bundling. We attribute the bending and bundling to electrostatic interactions due to charged (0001) polar surfaces, and also discussed the threshold surface charge densities for the bending and bundling based on a simple cantilever-bending model. Some growth features were indicative of the operation of electrostatic interactions during the growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of the electrical conductivity, Seebeck coefficient and Hall mobility from -300K to -1300K have been carried out on multiphase hotpressed samples of the nominal composition B6Si. In all samples the conductivity and the p-type Seebeck coefficient both increase smoothly with increasing temperature. By themselves, these facts suggest small-polaronic hopping between inequivalent sites. The measured Hall mobilities are always low, but vary in sign. A possible explanation is offered for this anomalous behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.