386 resultados para Semantic Space
em Queensland University of Technology - ePrints Archive
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.
Resumo:
Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference – its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ – the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Semantic space models of word meaning derived from co-occurrence statistics within a corpus of documents, such as the Hyperspace Analogous to Language (HAL) model, have been proposed in the past. While word similarity can be computed using these models, it is not clear how semantic spaces derived from different sets of documents can be compared. In this paper, we focus on this problem, and we revisit the proposal of using semantic subspace distance measurements [1]. In particular, we outline the research questions that still need to be addressed to investigate and validate these distance measures. Then, we describe our plans for future research.
Resumo:
Semantic Space models, which provide a numerical representation of words’ meaning extracted from corpus of documents, have been formalized in terms of Hermitian operators over real valued Hilbert spaces by Bruza et al. [1]. The collapse of a word into a particular meaning has been investigated applying the notion of quantum collapse of superpositional states [2]. While the semantic association between words in a Semantic Space can be computed by means of the Minkowski distance [3] or the cosine of the angle between the vector representation of each pair of words, a new procedure is needed in order to establish relations between two or more Semantic Spaces. We address the question: how can the distance between different Semantic Spaces be computed? By representing each Semantic Space as a subspace of a more general Hilbert space, the relationship between Semantic Spaces can be computed by means of the subspace distance. Such distance needs to take into account the difference in the dimensions between subspaces. The availability of a distance for comparing different Semantic Subspaces would enable to achieve a deeper understanding about the geometry of Semantic Spaces which would possibly translate into better effectiveness in Information Retrieval tasks.
Resumo:
We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.
Resumo:
In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.
Resumo:
Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information.
Resumo:
We report on analysis of discussions in an online community of people with chronic illness using socio-cognitively motivated, automatically produced semantic spaces. The analysis aims to further the emerging theory of "transition" (how people can learn to incorporate the consequences of illness into their lives). An automatically derived representation of sense of self for individuals is created in the semantic space by the analysis of the email utterances of the community members. The movement over time of the sense of self is visualised, via projection, with respect to axes of "ordinariness" and "extra-ordinariness". Qualitative evaluation shows that the visualisation is paralleled by the transitions of people during the course of their illness. The research aims to progress tools for analysis of textual data to promote greater use of tacit knowledge as found in online virtual communities. We hope it also encourages further interest in representation of sense-of-self.
Resumo:
This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
We propose a cluster ensemble method to map the corpus documents into the semantic space embedded in Wikipedia and group them using multiple types of feature space. A heterogeneous cluster ensemble is constructed with multiple types of relations i.e. document-term, document-concept and document-category. A final clustering solution is obtained by exploiting associations between document pairs and hubness of the documents. Empirical analysis with various real data sets reveals that the proposed meth-od outperforms state-of-the-art text clustering approaches.
Resumo:
This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as "doctors' opinions". Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities.
Resumo:
This paper shows that by using only symbolic language phrases, a mobile robot can purposefully navigate to specified rooms in previously unexplored environments. The robot intelligently organises a symbolic language description of the unseen environment and “imagines” a representative map, called the abstract map. The abstract map is an internal representation of the topological structure and spatial layout of symbolically defined locations. To perform goal-directed exploration, the abstract map creates a high-level semantic plan to reason about spaces beyond the robot’s known world. While completing the plan, the robot uses the metric guidance provided by a spatial layout, and grounded observations of door labels, to efficiently guide its navigation. The system is shown to complete exploration in unexplored spaces by travelling only 13.3% further than the optimal path.