361 resultados para Scientific Literacy
em Queensland University of Technology - ePrints Archive
Resumo:
International assessments of student science achievement, and growing evidence of students' waning interest in school science, have ensured that the development of scientific literacy continues to remain an important educational priority. Furthermore, researchers have called for teaching and learning strategies to engage students in the learning of science, particularly in the middle years of schooling. This study extends previous national and international research that has established a link between writing and learning science. Specifically, it investigates the learning experiences of eight intact Year 9 science classes as they engage in the writing of short stories that merge scientific and narrative genres (i.e., hybridised scientific narratives) about the socioscientific issue of biosecurity. This study employed a triangulation mixed methods research design, generating both quantitative and qualitative data, in order to investigate three research questions that examined the extent to which the students' participation in the study enhanced their scientific literacy; the extent to which the students demonstrated conceptual understanding of related scientific concepts through their written artefacts and in interviews about the artefacts; and the extent to which the students' participation in the project influenced their attitudes toward science and science learning. Three aspects of scientific literacy were investigated in this study: conceptual science understandings (a derived sense of scientific literacy), the students' transformation of scientific information in written stories about biosecurity (simple and expanded fundamental senses of scientific literacy), and attitudes toward science and science learning. The stories written by students in a selected case study class (N=26) were analysed quantitatively using a series of specifically-designed matrices that produce numerical scores that reflect students' developing fundamental and derived senses of scientific literacy. All students (N=152) also completed a Likert-style instrument (i.e., BioQuiz), pretest and posttest, that examined their interest in learning science, science self-efficacy, their perceived personal and general value of science, their familiarity with biosecurity issues, and their attitudes toward biosecurity. Socioscientific issues (SSI) education served as a theoretical framework for this study. It sought to investigate an alternative discourse with which students can engage in the context of SSI education, and the role of positive attitudes in engaging students in the negotiation of socioscientific issues. Results of the study have revealed that writing BioStories enhanced selected aspects of the participants' attitudes toward science and science learning, and their awareness and conceptual understanding of issues relating to biosecurity. Furthermore, the students' written artefacts alone did not provide an accurate representation of the level of their conceptual science understandings. An examination of these artefacts in combination with interviews about the students' written work provided a more comprehensive assessment of their developing scientific literacy. These findings support extensive calls for the utilisation of diversified writing-to-learn strategies in the science classroom, and therefore make a significant contribution to the writing-to-learn science literature, particularly in relation to the use of hybridised scientific genres. At the same time, this study presents the argument that the writing of hybridised scientific narratives such as BioStories can be used to complement the types of written discourse with which students engage in the negotiation of socioscientific issues, namely, argumentation, as the development of positive attitudes toward science and science learning can encourage students' participation in the discourse of science. The implications of this study for curricular design and implementation, and for further research, are also discussed.
Resumo:
In response to international concerns about scientific literacy and students’ waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue of biosecurity on the development of students’ scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a 6th grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi-experimental design with two classes of Australian middle school students (i.e., 6th grade, 11 years of age, n=55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about socioscientific issues (SSI) in a way that integrates scientific information into narrative storylines. Extending the practice to older students, and exploring additional issues related to writing about SSI are recommended for further research.
Resumo:
This paper will report on the way expert science teachers’ conceive of scientific literacy in their classrooms, the values related to scientific literacy they hold and how this conception and the underpinning values affect their teaching practice. Three perceived expert science teachers who teach both at senior and middle school levels and across the range of sub-disciplines (one senior biology, one senior chemistry and one senior physics) were interviewed about their understanding of scientific literacy and how this influenced their teaching practice. The three teachers were video recorded teaching a junior science class and a senior science class. The data were analysed to identify values that underpin their conceptions of science and science education. The analysis focussed on the matching of the verbalised conceptions and values with their practice of teaching science. This paper will report on these data.
Resumo:
Disengagement of students in science and the scientific literacy of young adults are interrelated international concerns. One way to address these concerns is to engage students imaginatively in activities designed to improve their scientific literacy. Our ongoing program of research has focused on the effects of a sequence of activities that require students to transform scientific information on important issues for their communities from government websites into narrative text suitable for a lay reader. These hybridized stories we call BioStories. Students upload their stories for peer review to a dedicated website. Peer reviews are intended to help students refine their stories. Reviewing BioStories also gives students access to a wider range of scientific topics and writing styles. We have conducted separate studies with students from Grade 6, Grade 9 and Grade 12, involving case study and quasi-experimental designs. The results from the 6th grade study support the argument that writing the sequence of stories helped the students become more familiar with the scientific issue, develop a deeper understanding of related biological concepts, and improve their interest in science. Unlike the Grade 6 study, it was not possible to include a control group for the study conducted across eight 9th grade classes. Nevertheless, these results suggest that hybridized writing developed more positive attitudes toward science and science learning, particularly in terms of the students’ interest and enjoyment. In the most recent case study with Grade 12 students, we found that pride, strength, determination, interest and alertness were among the positive emotions most strongly elicited by the writing project. Furthermore, the students expressed enhanced feelings of self-efficacy in successfully writing hybridized scientific narratives in science. In this chapter, we describe the pedagogy of hybridized writing in science, overview the evidence to support this approach, and identify future developments.
Resumo:
Through the use of critical discourse analysis, this thesis investigated the perceived importance of scientific literacy in the new Australian Curriculum: Science. It was found that scientific literacy was ambiguous, and that the document did not provide detailed scope for intentional teaching for scientific literacy. To overcome this, recommendations on how to intentionally teach for scientific literacy were provided, so that Australian Science teachers can focus on improving scientific literacy outcomes for all students within this new curriculum.
Resumo:
This study is about young adolescents' engagement in learning science. The middle years of schooling are critical in the development of students' interest and engagement with learning. Successful school experiences enhance dispositions towards a career related to those experiences. Poor experiences lead to negative attitudes and rejection of certain career pathways. At a time when students are becoming more aware, more independent and focused on peer relationships and social status, the high school environment in some circumstances offers more a content-centred curriculum that is less personally relevant to their lives than the social melee surrounding them. Science education can further exacerbate the situation by presenting abstract concepts that have limited contextual relevance and a seemingly difficult vocabulary that further alienates adolescents from the curriculum. In an attempt to reverse a perceived growing disinterest by students to science (Goodrum, Druhan & Abbs, 2011), a study was initiated based on a student-centred unit designed to enhance and sustain adolescent engagement in science. The premise of the study was that adolescent students are more responsive toward learning if they are given an appropriate learning environment that helps connect their learning with life beyond the school. The purpose of this study was to examine the experiences of young adolescents with the aim of transforming school learning in science into meaningful experiences that connected with their lives. Two areas were specifically canvassed and subsumed within the study to strengthen the design base. One area that of the middle schooling ideology, offered specific pedagogical approaches and a philosophical framework that could provide opportunities for reform. The other area, the construct of scientific literacy (OECD, 2007) as defined by Holbrook and Rannikmae, (2009) appeared to provide a sense of purpose for students to aim toward and value for becoming active citizens. The study reported here is a self-reflection of a teacher/researcher exploring practice and challenging existing approaches to the teaching of science in the middle years of schooling. The case study approach (Yin, 2003) was adopted to guide the design of the study. Over a 6-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of student-centred pedagogical practices with a Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. Both quantitative and qualitative data sources were employed in a partially mixed methods research approach (Leech & Onwuegbuzie, 2009) dominated by qualitative data with the concurrent collection of quantitative data to corroborate interpretations as a means of analysing and developing a model of the dynamic learning environment. The findings from the case study identified five propositions that became the basis for a model of a student-centred learning environment that was able to sustain student participation and thus engagement in science. The study suggested that adolescent student engagement can be promoted and sustained by providing a classroom climate that encourages and strengthens social interaction. Engagement in science can be enhanced by presenting developmentally appropriate challenges that require rigorous exploration of contextually relevant learning environments; supporting students to develop connections with a curriculum that aligns with their own experiences. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provide an authentic model for reforming pedagogy. The model and theory presented became an adjunct to my repertoire for science teaching in the middle years of schooling. The study was rewarding in that it helped address a void in my understanding of middle years of schooling by prompting me to re-think the notion of adolescence in the context of the science classroom. This study is timely given the report "The Status and Quality of Year 11 and 12 Science in Australian Schools" (Goodrum, Druhan & Abbs, 2011) and national curricular changes that are being proposed for science (ACARA, 2009).
Resumo:
This paper reports one aspect of a study of 28 young adults (18–26 years) engaging with the uncertain (contested) science of a television news report about recent research into mobile phone health risks. The aim of the study was to examine these young people’s ‘accounts of scientific knowledge’ in this context. Seven groups of friends responded to the news report, initially in focus group discussions. Later in semi-structured interviews they elaborated their understanding of the nature of science through their explanations of the scientists’ disagreement and described their mobile phone safety risk assessments. This paper presents their accounts in terms of their views of the nature of science and their concept understanding. Discussions were audio-recorded then analysed by coding the talk in terms of issues raised, which were grouped into themes and interpreted in terms of a moderate social constructionist theoretical framing. In this context, most participants expressed a ‘common sense’ view of the nature of science, describing it as an atheoretical, technical procedure of scientists testing their personal opinions on the issue, subject to the influence of funding sponsors. The roles of theory and data interpretation were largely ignored. It is argued that the nature of science understanding is crucial to engagement with contemporary socioscientific issues, particularly the roles of argumentation, theory, data interpretation, and the distinction of science from common sense. Implications for school science relate primarily to nature of science teaching and the inclusion of socioscientific issues in school science curricula. Future research directions are considered.
Resumo:
The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.
Resumo:
The Perth Declaration on Science and Technology Education of 2007 expresses strong concern about the state of science and technology education worldwide and calls on governments to respond to a number of suggestions for establishing the structural conditions for their improved practice. The quality of school education in science and technology has never before been of such critical importance to governments. There are three imperatives for its critical importance. The first relates to the traditional role of science in schooling, namely the identification, motivation and initial preparation of those students who will go on to further studies for careers in all those professional fi elds that directly involve science and technology. A suffi cient supply of these professionals is vital to the economy of all countries and to the health of their citizens. In the 21st century they are recognised everywhere as key players in ensuring that industrial and economic development occurs in a socially and environmentally sustainable way. In many countries this supply is now falling seriously short and urgently needs to be addressed. The second imperative is that sustainable technological development and many other possible societal applications of science require the support of scientifically and technologically informed citizens. Without the support and understanding of citizens, technological development can all too easily serve short term and sectional interests. The longer term progress of the whole society is overlooked, citizens will be confused about what should, and what should not be supported, and reactive and the environment will continue to be destroyed rather than sustained. Sustainable development, and the potential that science and technology increasingly offers, involves societies in ways that can often interact strongly, with traditional values, and hence, making decisions about them involve major moral decisions. All students need to be prepared through their science and technology education to be able to participate actively as persons and as responsible citizens in these essential and exciting possibilities. This goal is far from being generally achieved at present, but pathways to it are now more clearly understood. The third imperative derives from the changes that are resulting from the application of digital technologies that are the most rapid, the most widespread, and probably the most pervasive influence that science has ever had on human society. We all, wherever we live, are part of a global communication society. Information exchange and access to it that have been hitherto the realm of the few, are now literally in the hands of individuals. This is leading to profound changes in the World of Work and in what is known as the Knowledge Society. Schooling is now being challenged to contribute to the development in students of an active repertoire of generic and subject-based competencies. This contrasts very strongly with existing priorities, in subjects like the sciences that have seen the size of a student’s a store of established knowledge as the key measure of success. Science and technology education needs to be a key component in developing these competencies. When you add to these imperatives, the possibility that a more effective education in science and technology will enable more and more citizens to delight in, and feel a share in the great human enterprise we call Science, the case for new policy decisions is compellingly urgent. What follows are the recommendations (and some supplementary notes) for policy makers to consider about more operational aspects for improving science and technology education. They are listed under headings that point to the issues within each of these aspects. In the full document, a background is provided to each set of issues, including the commonly current state of science and technology education. Associated with each recommendation for consideration are the positive Prospects that could follow from such decision making, and the necessary Prerequisites, if such bold policy decisions are to fl ow, as intended, into practice in science and technology classrooms.
Resumo:
What are the ethical and political implications when the very foundations of life —things of awe and spiritual significance — are translated into products accessible to few people? This book critically analyses this historic recontextualisation. Through mediation — when meaning moves ‘from one text to another, from one discourse to another’ — biotechnology is transformed into analysable data and into public discourses. The unique book links biotechnology with media and citizenship. As with any ‘commodity’, biological products have been commodified. Because enormous speculative investment rests on this, risk will be understated and benefit will be overstated. Benefits will be unfairly distributed. Already, the bioprospecting of Southern megadiverse nations, legally sanctioned by U.S. property rights conventions, has led to wealth and health benefits in the North. Crucial to this development are biotechnological discourses that shift meanings from a “language of life” into technocratic discourses, infused with neo-liberal economic assumptions that promise progress and benefits for all. Crucial in this is the mass media’s representation of biotechnology for an audience with poor scientific literacy. Yet, even apparently benign biotechnology spawned by the Human Genome Project such as prenatal screening has eugenic possibilities, and genetic codes for illness are eagerly sought by insurance companies seeking to exclude certain people. These issues raise important questions about a citizenship that is founded on moral responsibility for the wellbeing of society now and into the future. After all, biotechnology is very much concerned with the essence of life itself. This book provides a space for alternative and dissident voices beyond the hype that surrounds biotechnology.
Resumo:
Increasing the scientific literacy of Australians has become an educational priority in recent times. The ‘Science State – Smart State’ initiative of the Queensland Government involves an action plan for improving science education that includes a Science for Life action. A desired outcome is for an increased understanding of the natural world so that responsible decisions concerning our future wellbeing can be made in an age of science and technology. Biotechnology is a technology that is having profound impact on our lives. This paper describes how 15-16 year old students and biology teachers revealed a mismatch in both attitudes and interests towards biotechnology between the students and teachers. The findings are of interest as the teachers are writing biotechnology into their work programs in response to new syllabus documents. The teacher’s areas of interest did not match those of the students, possibly resulting in a curriculum the teachers want to teach, but the students do not want to learn.
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.