37 resultados para Riemann Solvers
em Queensland University of Technology - ePrints Archive
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
The standard method for deciding bit-vector constraints is via eager reduction to propositional logic. This is usually done after first applying powerful rewrite techniques. While often efficient in practice, this method does not scale on problems for which top-level rewrites cannot reduce the problem size sufficiently. A lazy solver can target such problems by doing many satisfiability checks, each of which only reasons about a small subset of the problem. In addition, the lazy approach enables a wide range of optimization techniques that are not available to the eager approach. In this paper we describe the architecture and features of our lazy solver (LBV). We provide a comparative analysis of the eager and lazy approaches, and show how they are complementary in terms of the types of problems they can efficiently solve. For this reason, we propose a portfolio approach that runs a lazy and eager solver in parallel. Our empirical evaluation shows that the lazy solver can solve problems none of the eager solvers can and that the portfolio solver outperforms other solvers both in terms of total number of problems solved and the time taken to solve them.
Resumo:
Tridiagonal diagonally dominant linear systems arise in many scientific and engineering applications. The standard Thomas algorithm for solving such systems is inherently serial forming a bottleneck in computation. Algorithms such as cyclic reduction and SPIKE reduce a single large tridiagonal system into multiple small independent systems which can be solved in parallel. We have developed portable cyclic reduction and SPIKE algorithm OpenCL implementations with the intent to target a range of co-processors in a heterogeneous computing environment including Field Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs) and other multi-core processors. In this paper, we evaluate these designs in the context of solver performance, resource efficiency and numerical accuracy.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the consultants’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the subcontractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
This PhD study examines some of what happens in an individual’s mind regarding creativity during problem solving within an organisational context. It presents innovations related to creative motivation, cognitive style and framing effects that can be applied by managers to enhance individual employee creativity within the organisation and thereby assist organisations to become more innovative. The project delivers an understanding of how to leverage natural changes in creative motivation levels during problem solving. This pattern of response is called Creative Resolve Response (CRR). The project also presents evidence of how framing effects can be used to influence decisions involving creative options in order to enhance the potential for managers get employees to select creative options more often for implementation. The study’s objectives are to understand: • How creative motivation changes during problem solving • How cognitive style moderates these creative motivation changes • How framing effects apply to decisions involving creative options to solve problems • How cognitive style moderate these framing effects The thesis presents the findings from three controlled experiments based around self reports during contrived problem solving and decision making situations. The first experiment suggests that creative motivation varies in a predictable and systematic way during problem solving as a function of the problem solver’s perception of progress. The second experiment suggests that there are specific framing effects related to decisions involving creativity. It seems that simply describing an alternative as innovative may activate perceptual biases that overcome risk based framing effects. The third experiment suggests that cognitive style moderates decisions involving creativity in complex ways. It seems that in some contexts, decision makers will prefer a creative option, regardless of their cognitive style, if this option is both outside the bounds of what is officially allowed and yet ultimately safe. The thesis delivers innovation on three levels: theoretical, methodological and empirical. The highlights of these findings are outlined below: 1. Theoretical innovation with the conceptualisation of Creative Resolve Response based on an extension of Amabile’s research regarding creative motivation. 2. Theoretical innovation linking creative motivation and Kirton’s research on cognitive style. 3. Theoretical innovation linking both risk based and attribute framing effects to cognitive style. 4. Methodological innovation for defining and testing preferences for creative solution implementation in the form of operationalised creativity decision alternatives. 5. Methodological innovation to identify extreme decision options by applying Shafir’s findings regarding attribute framing effects in reverse to create a test. 6. Empirical innovation with statistically significant research findings which indicate creative motivation varies in a systematic way. 7. Empirical innovation with statistically significant research findings which identify innovation descriptor framing effects 8. Empirical innovation with statistically significant research findings which expand understanding of Kirton’s cognitive style descriptors including the importance of safe rule breaking. 9. Empirical innovation with statistically significant research findings which validate how framing effects do apply to decisions involving operationalised creativity. Drawing on previous research related to creative motivation, cognitive style, framing effects and supervisor interactions with employees, this study delivers insights which can assist managers to increase the production and implementation of creativity in organisations. Hopefully this will result in organisations which are more innovative. Such organisations have the potential to provide ongoing economic and social benefits.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.