27 resultados para REIDEMEISTER TORSION
em Queensland University of Technology - ePrints Archive
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.
Resumo:
This paper describes a study of the theoretical and experimental behaviour of box-columns of varying b/t ratios under loadings of axial compression and torsion and their combinations. Details of the testing rigs and the testing methods, the results obtained such as the load-deflection curves and the interaction diagrams, and experimental observations regarding the behaviour of box-models and the types of local plastic mechanisms associated with each type of loading are presented. A simplified rigid-plastic analysis is carried out to study the collapse behaviour of box-columns under these loadings, based on the observed plastic mechanisms, and the results are compared with those of experiments.
Resumo:
In this paper we examine the combined extension and torsion of a compressible isotropic elastic cylinder of finite extent. The equilibrium equations are formulated in terms of the principal stretches and then applied to the special case of pure torsion superimposed on a uniform extension (an isochoric deformation). Explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation with vanishing traction on the lateral surfaces of the cylinder are obtained. Some strain-energy functions satisfying these conditions are considered, existing results are recovered as special cases and new results are obtained. We also point out how the strain-energy functions generated from the considered isochoric deformation considered (of a compressible material) can be used to generate energy functions and corresponding solutions for the incompressible theory.
Resumo:
Hollow flange channel section is a cold-formed high-strength and thin-walled steel section with a unique shape including two rectangular hollow flanges and a slender web. Due to its mono-symmetric characteristics, it will also be subjected to torsion when subjected to transverse loads in practical applications. Past research on steel beams subject to torsion has concentrated on open sections while very few steel design standards give suitable design rules for torsion design. Since the hollow flange channel section is different from conventional open sections, its torsional behaviour remains unknown to researchers. Therefore the elastic behaviour of hollow flange channel sections subject to uniform and non-uniform torsion, and combined torsion and bending was investigated using the solutions of appropriate differential equilibrium equations. The section torsion shear flow, warping normal stress distribution, and section constants including torsion constant and warping constant were obtained. The results were compared with those from finite element analyses that verified the accuracy of analytical solutions. Parametric studies were undertaken for simply supported beams subject to a uniformly distributed torque and a uniformly distributed transverse load applied away from the shear centre. This paper presents the details of this research into the elastic behaviour and strength of hollow flange channel sections subject to torsion and bending and the results.
Resumo:
The LiteSteel beam (LSB) is a cold-formed high strength steel channel section made of two torsionally rigid closed flanges and a slender web. Due to its mono-symmetric characteristics, its centroid and shear centre do not coincide. The LSBs can be used in floor systems as joists or bearers and in these applications they are often subjected to transverse loads that are applied away from the shear centre. Hence they are often subjected to combined bending and torsion actions. Previous researches on LSBs have concentrated on their bending or shear behaviour and strengths, and only limited research has been undertaken on their combined bending and torsion behaviour. Therefore in this research a series of nine experiments was first conducted on LSBs subject to combined bending and torsion. Three LSB sections were tested to failure under eccentric loading at mid-span, and appropriate results were obtained from seven tests. A special test rig was used to simulate two different eccentricities and to provide accurate simple boundary conditions at the supports. Finite element models of tested LSBs were developed using ANSYS, and the ultimate strengths, failure modes, and load–displacement curves were obtained and compared with corresponding test results. Finite element analyses agreed well with test results and hence the developed models were used in a parametric study to investigate the effects of load locations, eccentricities, and spans on the combined bending and torsion behaviour of LSBs. The interaction between the ultimate bending and torsional moment capacities was studied and a simple design rule was proposed. This paper presents the details of the tests, finite element analyses, and parametric study of LSBs subject to combined bending and torsion, and the results.
Resumo:
In the structure of the title compound, C2H10N22+·C8H2Cl2O42-, the dications and dianions form hydrogen-bonded ribbon substructures which enclose conjoint cyclic R21(7), R12(7) and R42(8) associations and extend down the c-axis direction. These ribbons inter-associate down b, giving a two-dimensional sheet structure. In the dianions, one of the carboxylate groups is essentially coplanar with the benzene ring, while the other is normal to it [C-C-C-O torsion angles = 177.67 (12) and 81.94 (17)°, respectively].
Resumo:
In the structure of the title compound, cis NH4+ C8H11O4-, the carboxylic acid and carboxyl groups of the cation adopt C-C-C-O torsion angles of 174.9(2) and -145.4(2)deg. respecticely with the alicyclic ring. The ammonium H atoms of the cations give a total of five hydrogen-bonding associations with carboxyl O-atom acceptors of the anion which, together with a carboxylic acid O-H...O(carboxyl) interaction give two-dimensional sheet structures which lie in the (101) planes in the unit cell.
Resumo:
Background: Bone healing is sensitive to the initial mechanical conditions with tissue differentiation being determined within days of trauma. Whilst axial compression is regarded as stimulatory, the role of interfragmentary shear is controversial. The purpose of this study was to determine how the initial mechanical conditions produced by interfragmentary shear and torsion differ from those produced by axial compressive movements. ----- ----- Methods: The finite element method was used to estimate the strain, pressure and fluid flow in the early callus tissue produced by the different modes of interfragmentary movement found in vivo. Additionally, tissue formation was predicted according to three principally different mechanobiological theories. ----- ----- Findings: Large interfragmentary shear movements produced comparable strains and less fluid flow and pressure than moderate axial interfragmentary movements. Additionally, combined axial and shear movements did not result in overall increases in the strains and the strain magnitudes were similar to those produced by axial movements alone. Only when axial movements where applied did the non-distortional component of the pressure–deformation theory influence the initial tissue predictions. ----- ----- Interpretation: This study found that the mechanical stimuli generated by interfragmentary shear and torsion differed from those produced by axial interfragmentary movements. The initial tissue formation as predicted by the mechanobiological theories was dominated by the deformation stimulus.
Resumo:
BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.
Resumo:
Genitourinary (GU) problems are a common complaint in the community and to the emergency department (ED). Urinary tract infections (UTIs) are the second most common bacterial disease. UTIs rank as the sixteenth most frequently reported problem to general practitioners in Australia1 and between 10% and 20% of women will experience at least one UTI in their lifetime. Over 1,000,000 Australians are currently suffering with nephrolithiasis (renal calculi) and it is hy-pothesised that Australia’s hot, dry climate causes more stone formation than many other coun-tries in the world. Acute kidney injury (AKI) is a common complication of any trauma. Hypovol-aemia results in severe hypotension and this precipitates the development of acute tubular necrosis and subsequent AKI. The incidence of chronic kidney disease (CKD) is rising across the world. CKD is classified into five stages with those in stage 5 being classified as being in end stage kidney disease (ESKD). It is estimated that there are over 1.5 million people in Australia with CKD and there were over 16,000 Australians and over 2900 individuals in New Zealand with ESKD.2 Indigenous populations from both countries (Aboriginals, Torres Strait Islanders, Maoris, and Pacific Islanders) are over-represented in the number of people with all stages of CKD in both countries. Patients with compromised renal function often require the assistance of paramedics and will arrive at the ED with life-threatening fluid and electrolyte imbalances. Spe-cific GU emergencies discussed in this chapter are acute renal failure, rhabdomyolysis, chronic kidney disease, UTIs, acute urinary retention, urinary calculi, testicular torsion, epididymitis, and priapism. Refer to Chapter 31 for discussion of sexually transmitted infections (STIs) in women and to Chapter X for discussion of genitourinary trauma.
Resumo:
In the structure of the title salt 2C7H10N+.C8H2Cl2O4(2-) .H2O the two benzylaminium anions have different conformations, one being essentially planar the other having the side-chain rotated out of the benzene plane (minimum ring to side-chain C-C-C-N torsion angles = -3.6(6) and 50.1(5)\%, respectively). In the 4,5-dichlorophthalate dianion the carboxyl groups make ihedral angles of 23.0(2) and 76.5(2)\% with the benzene ring. Aminium N-H...O and water O-H...O hydrogen-bonding associations with carboxyl O-atom acceptors give a two-dimensional duplex sheet structure which extends along the (011) plane. Weak pi-pi interactions are also present between the benzene ring and one of the cation rings [minimum ring centroid separation = 3.749(3)Ang.
Resumo:
The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.
Resumo:
Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs’ mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.
Resumo:
Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.