200 resultados para Process performance
em Queensland University of Technology - ePrints Archive
Resumo:
Existing process mining techniques provide summary views of the overall process performance over a period of time, allowing analysts to identify bottlenecks and associated performance issues. However, these tools are not de- signed to help analysts understand how bottlenecks form and dissolve over time nor how the formation and dissolution of bottlenecks – and associated fluctua- tions in demand and capacity – affect the overall process performance. This paper presents an approach to analyze the evolution of process performance via a notion of Staged Process Flow (SPF). An SPF abstracts a business process as a series of queues corresponding to stages. The paper defines a number of stage character- istics and visualizations that collectively allow process performance evolution to be analyzed from multiple perspectives. The approach has been implemented in the ProM process mining framework. The paper demonstrates the advantages of the SPF approach over state-of-the-art process performance mining tools using two real-life event logs publicly available.
Resumo:
Providing effective IT support for business processes has become crucial for enterprises to stay competitive. In response to this need numerous process support paradigms (e.g., workflow management, service flow management, case handling), process specification standards (e.g., WS-BPEL, BPML, BPMN), process tools (e.g., ARIS Toolset, Tibco Staffware, FLOWer), and supporting methods have emerged in recent years. Summarized under the term “Business Process Management” (BPM), these paradigms, standards, tools, and methods have become a success-critical instrument for improving process performance.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent it is applicable for online drift detection.
Resumo:
Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.
Resumo:
This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.
Resumo:
Accounting information systems (AIS) capture and process accounting data and provide valuable information for decision-makers. However, in a rapidly changing environment, continual management of the AIS is necessary for organizations to optimise performance outcomes. We suggest that building a dynamic AIS capability enables accounting process and organizational performance. Using the dynamic capabilities framework (Teece 2007) we propose that a dynamic AIS capability can be developed through the synergy of three competencies: a flexible AIS, having a complementary business intelligence system and accounting professionals with IT technical competency. Using survey data, we find evidence of a positive association between a dynamic AIS capability, accounting process performance, and overall firm performance. The results suggest that developing a dynamic AIS resource can add value to an organization. This study provides guidance for organizations looking to leverage the performance outcomes of their AIS environment.
Resumo:
Creative processes, for instance, the development of visual effects or computer games, increasingly become part of the agenda of information systems researchers and practitioners. Such processes get their managerial challenges from the fact that they comprise both well-structured, transactional parts and creative parts. The latter can often not be precisely specified in terms of control flow, required resources, and outcome. The processes’ high uncertainty sets boundaries for the application of traditional business process management concepts, such as process automation, process modeling, process performance measurement, and risk management. Organizations must thus exercise caution when it comes to managing creative processes and supporting these with information technology. This, in turn, requires a profound understanding of the concept of creativity in business processes. In response to this, the present paper introduces a framework for conceptualizing creativity within business processes. The conceptual framework describes three types of uncertainty and constraints as well as the interrelationships among these. The study is grounded in the findings from three case studies that were conducted in the film and visual effects industry. Moreover, we provide initial evidence for the framework’s validity beyond this narrow focus. The framework is intended to serve as a sensitizing device that can guide further information systems research on creativity-related phenomena.
Resumo:
Developing economies accommodate more than three quarters of the world's population. This means understanding their growth and well-being is of critical importance. Information technology (IT) is one resource that has had a profound effect in shaping the global economy. IT is also an important resource for driving growth and development in developing economies. Investments in developing economies, however, have focused on the exploitation of labor and natural resources. Unlike in developed economies, focus on IT investment to improve efficiency and effectiveness of business process in developing economies has been sparse, and mechanisms for deriving better IT-related business value is not well understood. This study develops a complementarities-based business value model for developing economies, and tests the relationship between IT investments, IT-related complementarities, and business process performance. It also considers the relationship between business processes performance and firm-level performance. The results suggest that a coordinated investment in IT and IT-related complementarities related favorably to business process performance. Improvements in process-level performance lead to improvements in firm-level performance. The results also suggest that the IT-related complementarities are not only a source of business value on their own, but also enhance the IT resources' ability to contribute to business process performance. This study demonstrates that a coordinated investment approach is required in developing economies. With this approach, their IT resources and IT-related complementaries would help them significantly in improving their business processes, and eventually their firm-level performances.
Resumo:
Organisations devote substantial resources to acquire information technology (IT), and explaining the important issue of how IT can affect performance has posed a significant challenge to information system (IS) researchers. Owing to the importance of expanding our understanding on how and where IT and IT-related resources impact organisational performance, this study investigates the differential effects of IT resources and IT-related capabilities, in the presence of platform-related complementarities, on business process performance. We test these relationships empirically via a field survey of 216 firms. The findings suggest that IT resources and IT-related capabilities explain variance in performance. Of interest is the finding that IT resources and IT-related capabilities ability to explain variance in business process is further enhanced by the presence of the platform-related complementarities. Our findings are largely consistent with the resource-based and complementarity arguments of sources of IT-related business value.
Resumo:
Understanding information technology’s (ITs) contribution to business value is an imperative issue, and while we have attempted to untangle the relationship between IT and business value with some success, our knowledge of specific factors leading to ITs contribution to business value still remains limited. In this paper we propose that complementing IT resources, by establishing a sound IT platform with capable organisational resources may aid in ITs ability to contribute to business value. We suggest that performance measurement of this contribution be undertaken at the business process level first, and then mapped through to firm level performance measurement to obtain a better understanding of the path of IT business value contribution.
Resumo:
Information technology (IT) plays a critical role of enabler of activities that improve the performance of business processes. This enabling role of IT resources means continuous investment in IT is a strategic necessity. It is established that organizations’ IT-related capabilities leverage the enabling potential of IT resources. Today’s turbulent and challenging business environment requires organizations to do more from their existing and newly acquired IT resources. To achieve this, organizations need to discover ways or establish environments to nourish their existing IT-related capabilities, and develop new IT-related capabilities. We suggest one such environment, a dynamic IT-learning environment that could contribute to nourishing existing IT-related capabilities, and developing new IT-related capabilities. This environment is a product of coordination of four organizational factors that relate to the ways in which IT-related knowledge is applied to business processes, the accompanying reward structures, and ways in which the IT-related learning and knowledge is shared within the organization. Using 216 field survey responses, this paper shows that two IT-related capabilities of top management commitment to IT initiatives, and shared organizational knowledge between the IT and business unit managers has a stronger positive influence on business process performance in the presence of this dynamic IT-learning environment. The study also shows that a marginal IT-related capability, technical IT skills, has a positive and significant influence on business process performance in the presence of this environment. These outcomes imply that organizations’ internal environments could contribute to the management of their IT-related capabilities.
Resumo:
The ‘new style’ occupational health and safety legislation implemented in Australia from the late 1970s changed the character of OHS legal obligations, establishing general duties supported by process, performance and, more rarely, specification standards,1 and extending obligations to those who propagate risks as designers, manufacturers, importers or suppliers — the ‘upstream duty holders’. This article examines how OHS agencies inspect and enforce OHS legislation upstream, drawing on empirical research in four Australian states and relevant case law. We argue that upstream duty holders are an increasing area of attention for OHS inspectorates but these inspectorates have not yet risen to the challenge of harnessing these parties to help stem, at the source, the flow of risks into workplaces.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
Business Process Management (BPM) (Dumas et al. 2013) investigates how organizations function and can be improved on the basis of their business processes. The starting point for BPM is that organizational performance is a function of process performance. Thus, BPM proposes a set of methods, techniques and tools to discover, analyze, implement, monitor and control business processes, with the ultimate goal of improving these processes. Most importantly, BPM is not just an organizational management discipline. BPM also studies how technology, and particularly information technology, can effectively support the process improvement effort. In the past two decades the field of BPM has been the focus of extensive research, which spans an increasingly growing scope and advances technology in various directions. The main international forum for state-of-the-art research in this field is the International Conference on Business Process Management, or “BPM” for short—an annual meeting of the aca ...