327 resultados para Post-exercise recovery

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole body cryotherapy (WBC) involves repeatedly exposing an individual, dressed in minimal clothing, to extremely cold air (–100 to –130°C) for a short period. One specific claim that is often made is that WBC is effective in treating exercise-induced muscle soreness and damage. However, our results suggest that two bouts of WBC were ineffective in improving recovery from eccentric exercise when administered 24 hours after eccentric exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of specificity of exercise prescription and training is a longstanding and widely accepted foundation of the exercise sciences. Simply, the principle holds that training adaptations are achieved relative to the stimulus applied. That is, the manipulation of training variables (e.g. intensity or loading, mode, volume and frequency) directly influences the acute training stimulus, and so the long-term adaptive response (Young et al., 2001; Bird et al., 2005). Translating this concept to practice then recommends that exercise be prescribed specific to the desired outcomes, and the more closely this is achieved, the greater the performance gain is likely to be. However, the cardiovascular and metabolic adaptations traditionally associated with long, slow distance training types, similarly achieved using high-intensity training methods (for a review see Gibala et al., 2012), highlights understanding of underlying physiology as paramount for effective training program design. Various other factors including illness, sleep and psychology also impact on the training stimulus (Halson, 2014) and must be managed collectively with appropriate post-exercise recovery to continue performance improvements and reduce overtraining and injury risks (Kenttä and Hassmén, 1998).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 d⋅wk–1), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P<0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P<0.05) but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7)(20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellitecells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positivesatellite cell numbers were greater after ACT than after CWI (P<0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P<0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of hydrotherapy on time-trial performance and cardiac parasympathetic reactivation during recovery from intense training. On three occasions, 18 well-trained cyclists completed 60 min high-intensity cycling, followed 20 min later by one of three 10-min recovery interventions: passive rest (PAS), cold water immersion (CWI), or contrast water immersion (CWT). The cyclists then rested quietly for 160 min with R-R intervals and perceptions of recovery recorded every 30 min. Cardiac parasympathetic activity was evaluated using the natural logarithm of the square root of mean squared differences of successive R-R intervals (ln rMSSD). Finally, the cyclists completed a work-based cycling time trial. Effects were examined using magnitude-based inferences. Differences in time-trial performance between the three trials were trivial. Compared with PAS, general fatigue was very likely lower for CWI (difference [90% confidence limits; -12% (-18; -5)]) and CWT [-11% (-19; -2)]. Leg soreness was almost certainly lower following CWI [-22% (-30; -14)] and CWT [-27% (-37; -15)]. The change in mean ln rMSSD following the recovery interventions (ln rMSSD(Post-interv)) was almost certainly higher following CWI [16.0% (10.4; 23.2)] and very likely higher following CWT [12.5% (5.5; 20.0)] compared with PAS, and possibly higher following CWI [3.7% (-0.9; 8.4)] compared with CWT. The correlations between performance, ln rMSSD(Post-interv) and perceptions of recovery were unclear. A moderate correlation was observed between ln rMSSD(Post-interv) and leg soreness [r = -0.50 (-0.66; -0.29)]. Although the effects of CWI and CWT on performance were trivial, the beneficial effects on perceptions of recovery support the use of these recovery strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods: Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [ 15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (?19%, P<0.05) with a trend towards being greater than INT (?9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect90%CI; 0.590.87) and moderate (0.800.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.421.00) for INT vs. PULSE. Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (?20g) at regular intervals (?3h) throughout the day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold water immersion (CWI) and active recovery (ACT) are frequently used as post-exercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q), muscle oxygenation (SmO2) and blood volume (tHb), muscle temperature (Tmuscle ) and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q (7.9±2.7 l) and Tmuscle (2.2±0.8ºC) increased, whereas SmO2 (-21.5±8.8%) and tHb (-10.1±7.7 μM) decreased after exercise (p<0.05). During CWI, Q ̇(-1.1±0.7 l) and Tmuscle (-6.6±5.3ºC) decreased, while tHb (121±77 μM) increased (p<0.05). In the hour after CWI, Q ̇and Tmuscle remained low, while tHb also decreased (p<0.05). By contrast, during ACT, Q ̇(3.9±2.3 l), Tmuscle (2.2±0.5ºC), SmO2 (17.1±5.7%) and tHb (91±66 μM) all increased (p<0.05). In the hour after ACT, Tmuscle and tHb remained high (p<0.05). Peak isometric strength during 10 s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; p<0.05). Muscle deoxygenation time during MVCs increased after ACT (p<0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (p=0.052). These findings suggest firstly that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and secondly, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d−1) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During post-disaster recovery, an infrastructure system may be subject to a number of disturbances originating from several other interdependent infrastructures. These disturbances might result in a series of system failures, thereby having immediate impact on societal living conditions. The inability to detect signs of disturbance from one infrastructure during recovery might cause significant disruptive effects on other infrastructure via the interconnection that exist among them. In such circumstances, it clearly appears that critical infrastructures' interdependencies affect the recovery of each individual infrastructure, as well as those of other interdependent infrastructure systems. This is why infrastructure resilience needs to be improved in function of those interdependencies, particularly during the recovery period to avoid the occurrence of a ‘disaster of disaster’ scenario. Viewed from this perspective, resilience is achieved through an inter-organisational collaboration between the different organisations involved in the reconstruction of interdependent infrastructure systems. This paper suggests that to some extent, the existing degree of interconnectedness between these infrastructure systems can also be found in their resilience ability during post-disaster recovery. For instance, without a resilient energy system, a large-scale power outage could affect simultaneously all the interdependent infrastructures after a disaster. Thus, breaking down the silos of resilience would be the first step in minimizing the risks of disaster failures from one infrastructure to cascade or escalate to other interconnected systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of developing effective disaster management strategies has significantly grown as the world continues to be confronted with unprecedented disastrous events. Factors such as climate instability, recent urbanization along with rapid population growth in many cities around the world have unwittingly exacerbated the risks of potential disasters, leaving a large number of people and infrastructure exposed to new forms of threats from natural disasters such as flooding, cyclones, and earthquakes. With disasters on the rise, effective recovery planning of the built environment is becoming imperative as it is not only closely related to the well-being and essential functioning of society, but it also requires significant financial commitment. In the built environment context, post-disaster reconstruction focuses essentially on the repair and reconstruction of physical infrastructures. The reconstruction and rehabilitation efforts are generally performed in the form of collaborative partnerships that involve multiple organisations, enabling the restoration of interdependencies that exist between infrastructure systems such as energy, water (including wastewater), transport, and telecommunication systems. These interdependencies are major determinants of vulnerabilities and risks encountered by critical infrastructures and therefore have significant implications for post-disaster recovery. When disrupted by natural disasters, such interdependencies have the potential to promote the propagation of failures between critical infrastructures at various levels, and thus can have dire consequences on reconstruction activities. This paper outlines the results of a pilot study on how elements of infrastructure interdependencies have the potential to impede the post-disaster recovery effort. Using a set of unstructured interview questionnaires, plausible arguments provided by seven respondents revealed that during post-disaster recovery, critical infrastructures are mutually dependent on each other’s uninterrupted availability, both physically and through a host of information and communication technologies. Major disruption to their physical and cyber interdependencies could lead to cascading failures, which could delay the recovery effort. Thus, the existing interrelationship between critical infrastructures requires that the entire interconnected network be considered when managing reconstruction activities during the post-disaster recovery period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.