5 resultados para Piers.

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete filled steel tubular (CFST) columns are increasingly used in bridge piers and high-rise buildings due to their excellent axial load bearing capacity. These columns may experience severe damage or failure due to transverse impact of vehicle collisions. In this study, numerical investigation is carried out to evaluate the effect of carbon fibre reinforced polymer (CFRP) strengthening CFST columns under vehicular impact. The CFRP composites damage mechanisms are simulated to account four different failure criteria. The cohesive elements are introduced as interface element to properly simulate the adhesively bonded regime. Simplified vehicle model is also developed to represent real vehicle behaviour. The FE analysis results show that externally bonded CFRP composites improve the impact resistance capacity compared to bare CFST column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental investigation on the lateral impact performance of axially loaded concrete-filled double-skin tube (CFDST) columns. These columns have desirable structural and constructional properties and have been used as columns in building, legs of off shore platforms and as bridge piers. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, an experimental method employing an innovative instrumented horizontal impact testing system (HITS) was developed to apply lateral impact loads whilst the column maintained a static axial pre-loading to examine the failure mechanism and key response parameters of the column. These included the time histories of impact force, reaction forces, global lateral deflection and permanent local buckling profile. Eight full scale columns were tested for key parameters including the axial load level and impact location. Based on the test data, the failure mode, peak impact force, impact duration, peak reaction forces, reaction force duration, column maximum and residual global deflections and column local buckling length, depth and width under varying conditions are analysed and discussed. It is evident that the innovative HITS can successfully test structural columns under the combination of axial pre-loading and impact loading. The findings on the lateral impact response of the CFDST columns can serve as a benchmark reference for their future analysis and design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research treats the lateral impact behaviour of composite columns, which find increasing use as bridge piers and building columns. It offers (1) innovative experimental methods for testing structural columns, (2) dynamic computer simulation techniques as a viable tool in analysis and design of such columns and (3) significant new information on their performance which can be used in design. The research outcomes will enable to protect lives and properties against the risk of vehicular impacts caused either accidentally or intentionally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.