4 resultados para Peppers

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significance of the proposed name of a building to buyers of units off the plan has received recent attention in Queensland and the ACT with differing results. In Gough v South Sky Investments Pty Ltd the Queensland Court of Appeal concluded that the name of the building was not an essential term of the contract and rejected a claim by a number of buyers to terminate their contracts because of the change of name from Oracle to Peppers. In contrast, Rares J in the Federal Court decision of Madison Constructions Pty Ltd v Empire Building Group (ACT) Pty Ltd considered that the name of the building in a proposed development could potentially form the basis of misleading conduct about the association of the seller with a particular development corporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a global-optimisation frame-work for the design of a manipulator for harvesting capsicum(peppers) in the field. The framework uses a simulated capsicum scenario with automatically generated robot models based on DH parameters. Each automatically generated robot model is then placed in the simulated capsicum scenario and the ability of the robot model to get to several goals (capsicum with varying orientations and positions) is rated using two criteria:the length of a collision-free path and the dexterity of the end-effector. These criteria form the basis of the objective function used to perform a global optimisation. The paper shows a preliminary analysis and results that demonstrate the potential of this method to choose suitable robot models with varying degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.