10 resultados para Pear.
em Queensland University of Technology - ePrints Archive
Resumo:
The consistently high failure rate in Queensland University of Technology’s introductory programming subject reflects a similar dilemma facing other universities worldwide. Experiments were conducted to quantify the effectiveness of collaborative learning on introductory level programming students over a number of semesters, replicating previous studies in this area. A selection of workshops in the introductory programming subject required students to problem-solve and program in pairs, mimicking the eXtreme Programming concept of pair programming. The failure rate for the subject fell from what had been an average of 30% since 2003 (with a high of 41% in 2006), to just 5% for those students who worked consistently in pairs.
Resumo:
By 1925, the introduced prickly pear (Opuntia and Nopalea spp.) covered up to 60 million acres of Queensland and New South Wales in what was perceived as prime agricultural land. After 40 years of experimentation, all Queensland Government strategies had failed. Faced with this failure and a diminishing expectation that the land would ever be conquered, buffer zones were proposed by the newly formed Queensland Prickly Pear Land Commission. A close reading of government documents, newspaper reports and local histories about these buffer zones shows how settler anxieties over who could or should occupy the land shaped the kinds of strategies recommended and adopted in relation to this alien species. Physical and cultural techniques were used to manage the uneasy coexistence between prickly pear, on the one hand, and farmers and graziers on the other. Furthermore, this environmental history challenges the notion of racially homogenous closer settlement under the White Australia Policy, showing the many different kinds of livelihood and labour in prickly pear land in the 1920s.
Resumo:
The story of prickly pear in Australia is usually told as a tale of triumphant scientific intervention into an environmental disaster. Instead, this unarticle considers it as a transnational network in order to better understand the myriad of elements that made this event so important. Through this methodology emerges the complex nature of prickly pear land that included people, places, ideas, rhetoric and objects that traveled from all over the world into settler Australia.
Resumo:
In July 1926, the science behind biological control transitioned from an experimental method to a trusted policy tool in invasive species management. In local storytelling, historical writing and scientific analysis, the ‘lucky’ discovery of the South American Cactoblastis cactorum moth was a watershed moment for scientists concerned with prickly pear, Opuntia and Nopalea spp. Within 10 years, Queensland declared itself pest free. Overnight success is the climax in this tale's narrative arc. Articulating this introduction as a ‘lucky break’ worked to stabilize the narrative of human control in the agricultural environments of post-colonial Queensland, and, in doing so, consolidated biological control as critical management technique. I argue that ‘luck’ elides the assemblage of elements and actors necessary to enable this change, allowing settlers to distance themselves from the responsibility for disruptions associated with nineteenth-century plant transfers. To challenge the rhetorical function of luck, three episodes of contingency are discussed: (1) transnational mobility of things and knowledge, (2) the unpredictable adaptation of insect diet, and; (3) human vectors in industrialized insect–plant complexes. There are important distinguishing differences between luck and contingency, which I frame as a critical analytical tool for understanding the political role of non-humans, in the storied worlds of science in prickly pear land.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.
Resumo:
Herbivory is generally regarded as negatively impacting on host plant fitness. Frugivorous insects, which feed directly on plant reproductive tissues, are predicted to be particularly damaging to hosts. We tested this prediction with the fruit fly, Bactrocera tryoni, by recording the impact of larval feeding on two direct (seed number and germination) and two indirect (fruit decay rate and attraction/deterrence of vertebrate frugivores) measures of host plant fitness. Experiments were done in the laboratory, glasshouse and tropical rainforest. We found no negative impact of larval feeding on seed number or germination for three test plants: tomato, capsicum and eggplant. Further, larval feeding accelerated the initiation of decay and increased the final level of fruit decay in tomatoes, apples, pawpaw and pear, a result considered to be beneficial to the fruit. In rainforest studies, native rodents preferred infested apple and pears compared to uninfested control fruit; however, there were no differences observed between treatments for tomato and pawpaw. For our study fruits, these results demonstrate that fruit fly larval infestation has neutral or beneficial impacts on the host plant, an outcome which may be largely influenced by the physical properties of the host. These results may contribute to explaining why fruit flies have not evolved the same level of host specialization generally observed for other herbivore groups.
Resumo:
This paper examines the use of crowdfunding platforms to fund academic research. Looking specifically at the use of a Pozible campaign to raise funds for a small pilot research study into home education in Australia, the paper reports on the success and problems of using the platform. It also examines the crowdsourcing of literature searching as part of the package. The paper looks at the realities of using this type of platform to gain start–up funding for a project and argues that families and friends are likely to be the biggest supporters. The finding that family and friends are likely to be the highest supporters supports similar work in the arts communities that are traditionally served by crowdfunding platforms. The paper argues that, with exceptions, these platforms can be a source of income in times where academics are finding it increasingly difficult to source government funding for projects.
Resumo:
An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.