94 resultados para Pb containing ZrTiO4 (PLZT)
em Queensland University of Technology - ePrints Archive
Resumo:
Low density suburban development and excessive use of automobiles are associated with serious urban and environmental problems. These problems include traffic congestion, longer commuting times, high automobile dependency, air and water pollution, and increased depletion of natural resources. Master planned development suggests itself as a possible palliative for the ills of low density and high travel. The following study examines the patterns and dynamics of movement in a selection of master planned estates in Australia. The study develops new approaches for assessing the containment of travel within planned development. Its key aim is to clarify and map the relationships between trip generation and urban form and structure. The initial conceptual framework of the paper is developed in a review of literature related to urban form and travel behaviour. These concepts are tested empirically in a pilot study of suburban travel activity in master planned estates. A geographical information systems methodology is used to determine regional journey-to-work patterns and travel containment rates. Factors that influence selfcontainment patterns are estimated with a regression model. This research is a useful preliminary examination of travel self-containment in Australian master planned estates.
Resumo:
Low density suburban development and excessive use of automobiles are associated with serious urban and environmental problems. These problems include traffic congestion, longer commuting times, high automobile dependency, air and water pollution, and increased depletion of natural resources. Master planned development suggests itself as a possible palliative for the ills of low density and high travel. The following study examines the patterns and dynamics of movement in a selection of master planned estates in Australia. The study develops new approaches for assessing the containment of travel within planned development. Its key aim is to clarify and map the relationships between trip generation and urban form and structure. The initial conceptual framework of the report is developed in a review of literature related to urban form and travel behaviour. These concepts are tested empirically in a pilot study of suburban travel activity in master planned estates. A geographical information systems (GIS) methodology is used to determine regional journey-to-work patterns and travel containment rates. Factors that influence self-containment patterns are estimated with a regression model. The key research findings of the pilot study are: - There is a strong relation between urban structural form and patterns of trip generation; - The travel self-containment of Australian master planned estates is lower than the scholarly literature implies would occur if appropriate planning principles to achieve sustainable urban travel were followed; - Proximity to the central business district, income level and education status are positively correlated with travel containment; - Master planned estates depend more on local and regional centres for employment than on the central business district; - The service sector is the major employer in and around master planned estates. It tends to provide part-time and casual employment rather than full-time employment; - Travel self-containment is negative correlated with car dependency. Master planned estates with less car dependent residents, and with good access to public transport, appear to be more self-contained and, consequently, more sustainable than the norm. This research is a useful preliminary examination of travel self-containment in Australian master planned estates. It by no means exhausts the subject. In future research we hope to further assess sustainable travel patterns with more detailed spatial analysis.
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Resumo:
Isolation of a faulted segment, from either side of a fault, in a radial feeder that has several converter interfaced DGs is a challenging task when current sensing protective devices are employed. The protective device, even if it senses a downstream fault, may not operate if fault current level is low due to the current limiting operation of converters. In this paper, a new inverse type relay is introduced based on line admittance measurement to protect a distribution network, which has several converter interfaced DGs. The basic operation of this relay, its grading and reach settings are explained. Moreover a method is proposed to compensate the fault resistance such that the relay operation under this condition is reliable. Then designed relay performances are evaluated in a radial distribution network. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
This paper shows how the power quality can be improved in a microgrid that is supplying a nonlinear and unbalanced load. The microgrid contains a hybrid combination of inertial and converter interfaced distributed generation units where a decentralized power sharing algorithm is used to control its power management. One of the distributed generators in the microgrid is used as a power quality compensator for the unbalanced and harmonic load. The current reference generation for power quality improvement takes into account the active and reactive power to be supplied by the micro source which is connected to the compensator. Depending on the power requirement of the nonlinear load, the proposed control scheme can change modes of operation without any external communication interfaces. The compensator can operate in two modes depending on the entire power demand of the unbalanced nonlinear load. The proposed control scheme can even compensate system unbalance caused by the single-phase micro sources and load changes. The efficacy of the proposed power quality improvement control and method in such a microgrid is validated through extensive simulation studies using PSCAD/EMTDC software with detailed dynamic models of the micro sources and power electronic converters
Resumo:
Raman spectroscopy of the mineral partzite Cu2Sb2(O,OH)7 complimented with infrared spectroscopy were studied and related to the structure of the mineral. The Raman spectrum shows some considerable complexity with a number of overlapping bands observed at 479, 520, 594, 607 and 620 cm-1 with additional low intensity bands found at 675, 730, 777 and 837 cm-1. Raman bands of partzite in the spectral region 590 to 675 cm-1 are attributable the ν1 symmetric stretching modes. The Raman bands at 479 and 520 cm-1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 1396 and 1455 cm-1 are attributed to SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and OH units is found. Raman bands are observed at 3266, 3376, 3407, 3563, 3586 and 3622 cm-1. The first three bands are assigned to water stretching vibrations. The three higher wavenumber bands are assigned to the stretching vibrations of the OH units. It is proposed that based upon observation of the Raman spectra that water is involved in the structure of partzite. Thus the formula Cu2Sb2(O,OH)7 may be better written as Cu2Sb2(O,OH)7 •xH2O
Resumo:
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3•3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793°C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.
Resumo:
The kaolinite-like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si-O-Si bridges, SiOSi and OSiO bending vibrations, (Si-Oterminal)- stretching vibrations, OH stretching vibrations of hydroxyl ions, and OH bending vibrations were attributed to observed bands. Infrared bands 3289-3470 cm-1 and Raman bands 1590-1667 cm-1 were assigned to adsorbed water. O-H...O hydrogen bond lengths were calculated from the Raman and infrared spectra.
Resumo:
Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.