259 resultados para Parametric oscillators
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.
Resumo:
Objectives The objectives of this project were two-fold: • Assess the ease with which current architectural CAD systems supported the use ofparametric descriptions in defining building shape, engineering system performance and cost at the early stages of building design; • Assess the feasibility of implementing a software decision support system that allowed designers to trade-off the characteristics and configuration of various engineering systems to move towards a “global optimum” rather than considering each system in isolation and expecting humans to weigh up all of the costs and benefits. The first stage of the project consisted of using four different CAD systems to define building shells (envelopes) with different usages. These models were then exported into a shared database using the IFC information exchange specifications. The second stage involved the implementation of small computer programs that were able to estimate relevant system parameters based on performance requirements and the constraints imposed by the other systems. These are presented in a unified user interface that extracts the appropriate building shape parameters from the shared database Note that the term parametric in this context refers to the relationships among and between all elements of the building model - not just geometric associations - which will enable the desired coordination.
Resumo:
A parametric study was carried out to investigate the effects on reconstructed images from a ground penetrating radar (GPR) due to (a) the centre frequency of the GPR excitation pulse, (b) the height of transmitting and receiving antennas above ground level, and (c) the proximity of the buried objects. An integrated software package was developed to streamline the computer simulation based on synthetic data generated by GPRMax.
Resumo:
Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.
Resumo:
Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
This paper seeks to identify and quantify sources of the lagging productivity in Singapore’s retail sector as reported in the Economic Strategies Committee 2010 report. A two-stage analysis is adopted. In the first stage, the Malmquist productivity index is employed which provides measures of productivity change, technological change and efficiency change. In the second stage, technical efficiency estimates are regressed against explanatory variables based on a truncated regression model. Sources of technical efficiency were attributed to quality of workers while product assortment and competition negatively impacted on efficiency.
Resumo:
Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.
Resumo:
Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].
Resumo:
The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
A frame-rate stereo vision system, based on non-parametric matching metrics, is described. Traditional metrics, such as normalized cross-correlation, are expensive in terms of logic. Non-parametric measures require only simple, parallelizable, functions such as comparators, counters and exclusive-or, and are thus very well suited to implementation in reprogrammable logic.