18 resultados para POLYPHENYLENE SULFIDE

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soda process was the first chemical pulping method and was patented in 1845. Soda pulping led to kraft pulping, which involves the combined use of sodium hydroxide and sodium sulfide. Today, kraft pulping dominates the chemical pulping industry. However, about 10% of the total chemical pulp produced in the world is made using non-wood material, such as bagasse and wheat straw. The soda process is the preferred method of chemical pulping of non-wood materials, because it is considered to be economically viable on a small scale and for bagasse is compatible with sugarcane processing. With recent developments, the soda process can be designed to produce minimal effluent discharge and the fouling of evaporators by silica precipitation. The aim of this work is to produce bagasse fibres suitable for papermaking and allied applications and to produce sulfur-free lignin for use in specialty applications. A preliminary economic analysis of the soda process for producing commodity silica, lignin and pulp for papermaking is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO2 moieties to a sulfide phase was observed using XPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis, structure and properties of [2]rotaxanes prepared by the assembly of benzylic amide macrocycles around a series of amide and sulfide-/sulfoxide-/sulfone-containing threads. The efficacy of rotaxane formation is related to the hydrogen bond accepting properties of the various sulfur-containing functional groups in the thread, with the highest yields (up to 63% with a rigid vinyl spacer in the template site) obtained for sulfoxide rotaxanes. X-Ray crystallography of a sulfoxide rotaxane, 5, shows that the macrocycle adopts a highly symmetrical chair-like conformation in the solid state, with short hydrogen bonds between the macrocycle isophthalamide NH-protons and the amide carbonyl and sulfoxide S-O of the thread. In contrast, in the X-ray crystal structures of the analogous sulfide (4) and sulfone (6) rotaxanes the macrocycle adopts boat-like conformations with long intercomponent NH…O=SO and NH…S hydrogen bonds (in addition to several intercomponent amide-amide hydrogen bonds). Taking advantage of the different hydrogen bonding modes of the sulfur-based functional groups, a switchable molecular shuttle was prepared in which the oxidation level of sulfur determines the position of the macrocycle on the thread.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examples of successful fabrication of low-dimensional semiconducting nanomaterials in the Integrated Plasma-Aided Nanofabrication Facility are shown. Self-assembled size-uniform ZnO nanoparticles, ultra-high-aspect ratio Si nanowires, vertically aligned cadmium sulfide nanostructures, and quarternary semiconducting SiCAlN nanomaterial have been synthesized using inductively coupled plasma-assisted RF magnetron sputtering deposition. The observed increase in crystallinity and growth rates of the nanostructures are explained by using a model of plasma-enhanced adatom surface diffusion under conditions of local energy exchange between the ion flux and the growth surface. Issues related to plasma-based growth of low-dimensional semiconducting nanomaterials are discussed as well. © 2007 Elsevier B.V. All rights reserved.