323 resultados para PERI-IMPLANT BONE
em Queensland University of Technology - ePrints Archive
Resumo:
The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.
Resumo:
Background and purpose Our aim was to prove in an animal model that the use of HA paste at the cement-bone interface in the acetabulum would improve fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylemethacrylate (PMMA). Methods We made a randomized study involving 22 sheep to test whether the application of BoneSource hydroxyapatite material to the surface of the ovine acetabulum prior to cementing a polyethylene cup at hip arthroplasty improved the fixation and the nature of the interface. We studied the gross radiographical appearance of the implant-bone interface and the histological appearance at the interface. Results There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not confer any detrimental effects. In some cases the material appeared to have been fully resorbed. When the material was evident on histological section, it was incorporated into an osseointegrated interface. There was no giant cell reaction present in any case. There was no evidence of migration of BoneSource to the articulation. Interpretation The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in man with to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.
Resumo:
Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.
Resumo:
Purpose: The purpose of this study was to identify retrospectively the predictors of implant survival when the flapless protocol was used in two private dental practices. Materials and Methods: The collected data were initially computer searched to identify the patients; later, a hand search of patient records was carried out to identify all flapless implants consecutively inserted over the last 10 years. The demographic information gathered on statistical predictors included age, sex, periodontal and peri-implantitis status, smoking, details of implants inserted, implant locations, placement time after extraction, use of simultaneous guided hard and soft tissue regeneration procedures, loading protocols, type of prosthesis, and treatment outcomes (implant survival and complications). Excluded were any implants that required flaps or simultaneous guided hard and soft tissue regeneration procedures, and implants narrower than 3.25 mm. Results: A total of 1,241 implants had been placed in 472 patients. Life table analysis indicated cumulative 5-year and 10-year implant survival rates of 97.9% and 96.5%, respectively. Most of the failed implants occurred in the posterior maxilla (54%) in type 4 bone (74.0%), and 55.0% of failed implants had been placed in smokers. Conclusion: Flapless dental implant surgery can yield an implant survival rate comparable to that reported in other studies using traditional flap techniques.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component.
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In endoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone- morphogenetic-protein alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent endoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types. Significantly better rates of fusion occurred in endoscopic anterior instrumented scoliosis correction using femoral allograft compared to autologous rib-heads and iliac crest graft. This may be partly explained by the difficulty obtaining sufficient quantities of autologous graft. Lower fusion rates in the autologous graft group appeared to predispose to rod fracture although the clinical consequence of implant failure is uncertain.
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In thoracoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone morphogenetic protein (BMP) alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent thoracoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types.
Resumo:
Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.
Resumo:
Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.
Resumo:
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone–implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8 mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8 mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone–implant interface.