530 resultados para ORGANIZED GROWTH

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H 2 + CH 4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices. The nanocone formation mechanism is explained in terms of redistribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array and passivation of carbon in narrow gaps where the access of plasma ions is hindered. Extensive numerical simulations were used to support the proposed growth mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing interest in nanoscience and nanotechnology has prompted intense investigations into appropriate fabrication techniques. Self-organized, bottom-up growth of nanomaterials using plasma nanofabrication techniques1–10 has proven to be one of the most promising approaches for the construction of precisely tailored nanostructures (i.e., quantum dots,11–13 nanotubes,14–17 nanowires,18–20 etc.) arrays. Thus the primary aim of this chapter is to show how plasmas may be used to achieve a high level of control during the self-organized growth of a range of nanomaterials, from zero-dimensional quantum dots (Section 15.2) to one- and two-dimensional nanomaterials (Section 15.3) to nanostructured films (Section 15.4)...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review and discuss the literature on small firm growth with an intention to provide a useful vantage point for new research studies regarding this important phenomenon. We first discuss conceptual and methodological issues that represent critical choices for those who research growth and which make it challenging to compare results from previous studies. The substantial review of past research is organized into four sections representing two smaller and two larger literatures. The first of the latter focuses on internal and external drivers of small firm growth. Here we find that much has been learnt and that many valuable generalizations can be made. However, we also conclude that more research of the same kind is unlikely to yield much. While interactive and non-linear effects may be worth pursuing it is unlikely that any new and important growth drivers or strong, linear main effects would be found. The second large literature deals with organizational life-cycles or stages of development. While deservedly criticized for unwarranted determinism and weak empirics this type of approach addresses problems of high practical and also theoretical relevance, and should not be shunned by researchers. We argue that with a change in the fundamental assumptions and improved empirical design, research on the organizational and managerial consequences of growth is an important line of inquiry. With this, we overlap with one of the smaller literatures, namely studies focusing on the effects of growth. We argue that studies too often assume that growth equals success. We advocate instead the use of growth as an intermediary variable that influences more fundamental goals in ways that should be carefully examined rather than assumed. The second small literature distinguishes between different modes or forms of growth, including, e.g., organic vs. acquisition-based growth, and international expansion. We note that modes of growth is an important topic that has been under studied in the growth literature, whereas in other branches of research aspects of it may have been studied intensely, but not primarily from a growth perspective. In the final section we elaborate on ways forward for research on small firm growth. We point at rich opportunities for researchers who look beyond drivers of growth, where growth is viewed as a homogenous phenomenon assumed to unambiguously reflect success, and instead focus on growth as a process and a multi-dimensional phenomenon, as well as on how growth relates to more fundamental outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organized crime in the twenty-first century is a knowledge war that poses an incalculable global threat to the world economy and harm to society - the economic and social costs are estimated at upwards of L20 billion a year for the UK alone (SOCA 2006/7). Organized Crime: Policing Illegal Business Entrepreneurialism offers a unique approach to the tackling of this area by exploring how it works through the conceptual framework of a business enterprise. Structured in three parts, the book progresses systematically through key areas and concepts integral to dealing effectively with the myriad contemporary forms of organised crime and provides insights on where, how and when to disrupt and dismantle a criminal business activity through current policing practices and policies. From the initial set up of a crime business through to the long term forecasting for growth and profitability, the authors dissect and analyse the different phases of the business enterprise and propose a 'Knowledge-Managed Policing' (KMP) approach to criminal entrepreneurialism. Combining conceptual and practical issues, this is a must-have reference for all police professionals, policing academics and government policy makers who are interested in a Strategy-led, Intelligence supported, Knowledge-Managed approach to policing illegal business entrepreneurialism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of long self-organized carbon connections (where the length is much greater than the diameter) between Ag nanoparticles on a Si(1 0 0) surface in atmospheric pressure Ar + CH4 microplasmas is demonstrated. A growth scenario explaining the connection nucleation and growth is proposed, and this is supported by numerical simulations which reveal that the electric field pattern around the growing connections affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization. Results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents an investigation of self-organizational and -assembly processes of nanostructure growth on surfaces exposed to low-temperature plasmas. We have considered three main growth stages-initial, or sub-monolayer growth stage, separate nanostructure growth stage, and array growth stages with the characteristic sizes of several nm, several tens of nm, and several hundreds of nm, respectively, and have demonstrated, by the experimental data and hybrid multiscale numerical simulations, that the plasma parameters can strongly influence the surface processes and hence the kinetics of self-organization and -assembly. Our results show that plasma-controlled self-organization is a promising way to assemble large regular arrays of nanostructures. © 2008 IUPAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.