23 resultados para OPIOID
em Queensland University of Technology - ePrints Archive
Resumo:
Background: The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with interindividual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of this study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods: The coupling of wild-type and mutant μ opioid receptors to voltage-gated Ca channels after exposure to either ligand was examined by employing the whole cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. RESULTS:: The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately fivefold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared with the 118AA mice. Conclusions: This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor's pharmacology in sensory neurons. In addition, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. © 2011 the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins. Anesthesiology.
Resumo:
Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.
Resumo:
A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0–5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [35S]GTPS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated 35[S]GTPS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.
Resumo:
Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the μ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.
Resumo:
Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction.
Resumo:
Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the ‘anti-reward’ effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking.
Resumo:
Delta opioid receptors are implicated in a variety of psychiatric and neurological disorders. These receptors play a key role in the reinforcing properties of drugs of abuse, and polymorphisms in OPRD1 (the gene encoding delta opioid receptors) are associated with drug addiction. Delta opioid receptors are also involved in protecting neurons against hypoxic and ischemic stress. Here, we first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer's Disease Neuroimaging Initiative. We hypothesized that common variants in OPRD1 would be associated with differences in brain structure, particularly in regions relevant to addictive and neurodegenerative disorders. One very common variant (rs678849) predicted differences in regional brain volumes. We replicated the association of this single-nucleotide polymorphism with regional tissue volumes in a large sample of young participants in the Queensland Twin Imaging study. Although the same allele was associated with reduced volumes in both cohorts, the brain regions affected differed between the two samples. In healthy elderly, exploratory analyses suggested that the genotype associated with reduced brain volumes in both cohorts may also predict cerebrospinal fluid levels of neurodegenerative biomarkers, but this requires confirmation. If opiate receptor genetic variants are related to individual differences in brain structure, genotyping of these variants may be helpful when designing clinical trials targeting delta opioid receptors to treat neurological disorders.
Resumo:
Aim: Opioid replacement therapy (ORT) is an established therapy for a patient group that has been associated with nutrition-related comorbidities. This paper aims to assess the nutritional intake and supplementation in ORT patients, determine the extent of nutritional/dietary advice supplied to ORT patients and to briefly examine patients' perception of pharmacists' provision of nutritional advice. Methods: The nutritional intake of ORT patients receiving treatment in community pharmacies within the Australian Capital Territory was assessed via a 24-hour recall survey. Food intake data were analysed via nutrient analysis software and compared with Australian Nutrition Reference Values and the nutrient intakes of the Australian population. Patients were surveyed to determine supplement use and perceptions of nutritional advice gained by pharmacists. Results: Potential insufficient intake of various macronutrients and micronutrients was observed in both sexes. Less than 25 of patients recorded supplement use. Fifteen percent of males and 21 of females stated that they had approached a pharmacist with a nutrition-related query. All patients who received nutritional advice followed the advice. Conclusions: ORT patients dosing at community pharmacies appear to have poor nutritional intake. ORT patients appear to be receptive to pharmacist's advice. Community pharmacists can potentially increase the beneficial health outcomes in this population through the proactive supply of accurate nutritional advice.
Resumo:
Substance misuse is common in early psychosis, and impacts negatively on outcomes. Little is known about effective interventions for this population. We report a pilot study of brief intervention for substance misuse in early psychosis (Start Over and Survive: SOS), comparing it with Standard Care (SC). Twenty-five in-patients aged 18-35 years with early psychosis and current misuse of non-opioid drugs were allocated randomly to conditions. Substance use and related problems were assessed at baseline, 6 weeks and 3, 6 and 12 months. Final assessments were blind to condition. All 13 SOS participants who proceeded to motivational interviewing reported less substance use at 6 months, compared with 58% (7/12) in SC alone. Effects were well maintained to 12 months. However, more SOS participants lived with a relative or partner, and this also was associated with better outcomes. Engagement remained challenging: 39% (16/41) declined participation and 38% (5/13) in SOS only received rapport building. Further research will increase sample size, and address both engagement and potential confounds.
Resumo:
Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence
Resumo:
16.1. Agents to control acidity 16.1.1 Antacids 16.1.2 Proton pump inhibitors and antibiotics for Helicobacter pylori 16.1.3 Histamine H2 receptor antagonists 16.1.4 Misoprostol 16.1.5 Sucralfate 16.2. Prokinetics and emetics 16.2.1 Introduction to prokinetics 16.2.2 Prokinetic agents 16.2.3 Emesis with cytotoxic drugs and drugs for 16.2.4 Motion sickness and drugs for 16.2.5 Drugs for post-operative emesis 16.3. Agents used for diarrhea, constipation, irritable bowel syndrome 16.3.1 Treatment for diarrhea 16.3.2 Treatment for constipation 16.3.3 Treatment for opioid-induced constipation 16.4. Drugs for inflammatory bowel disease 16.4.1 Mesalazine 16.4.2 Glucocorticoids 16.4.3 Infliximab