139 resultados para Nitroxide Radicals
em Queensland University of Technology - ePrints Archive
Resumo:
The orientational distribution of a set of stable nitroxide radicals in aligned liquid crystals 5CB (nematic) and 8CB (smectic A) was studied in detail by numerical simulation of EPR spectra. The order parameters up to the 10th rank were measured. The directions of the principal orientation axes of the radicals were determined. It was shown that the ordering of the probe molecules is controlled by their interaction with the matrix molecules more than the inherent geometry of the probes themselves. The rigid fused phenanthrene-based (A5) and 2-azaphenalene (A4) nitroxides as well as the rigid core elongated C11 and 5α-cholestane (CLS) nitroxides were found to be most sensitive to the orientation of the liquid crystal matrixes.
Resumo:
Free-radical processes underpin the thermo-oxidative degradation of polyolefins. Thus, to extend the lifetime of these polymers, stabilizers are generally added during processing to scavenge the free radicals formed as the polymer degrades. Nitroxide radical precursors, such as hindered amine stabilizers (HAS),1,2 are common polypropylene additives as the nitroxide moiety is a potent scavenger of polymer alkyl radicals (R¥). Oxidation of HAS by radicals formed during polypropylene degradation yields nitroxide radicals (RRNO¥), which rapidly trap the polymer degradation species to produce alkoxyamines, thus retarding oxidative polymer degradation. This increase in polymer stability is demonstrated by a lengthening of the “induction period” of the polymer (the time prior to a sharp rise in the oxidation of the polymer). Instrumental techniques such as chemiluminescence or infrared spectroscopy are somewhat limited in detecting changes in the polymer during the initial stages of degradation. Therefore, other methods for observing polymer degradation have been sought as the useful life of a polymer does not extend far beyond its “induction period”
Resumo:
The detection and potential treatment of oxidative stress in biological systems has been explored using isoindoline-based nitroxide radicals. A novel tetraethyl-fluorescein nitroxide was synthesised for its use as a profluorescent probe for redox processes in biological systems. This tetraethyl system, as well as a tetramethyl-fluorescein nitroxide, were shown to be sensitive and selective probes for superoxide in vitro. The redox environment of cellular systems was also explored using the tetramethylfluorescein species based on its reduction to the hydroxylamine. Flow cytometry was employed to assess the extent of nitroxide reduction, reflecting the overall cellular redox environment. Treatment of normal fibroblasts with rotenone and 2-deoxyglucose resulted in an oxidising cellular environment as shown by the lack of reduction of the fluorescein-nitroxide system. Assessment of the tetraethyl-fluorescein nitroxide system in the same way demonstrated its enhanced resistance to reduction and offers the potential to detect and image biologically relevant reactive oxygen species directly. Importantly, these profluorescent nitroxide compounds were shown to be more effective than the more widely used and commercially available probes for reactive oxygen species such as 2’,7’-dichlorodihydrofluorescein diacetate. Fluorescence imaging of the tetramethyl-fluorescein nitroxide and a number of other rhodamine-nitroxide derivatives was undertaken, revealing the differential cellular localisation of these systems and thus their potential for the detection of redox changes in specific cellular compartments. As well as developing novel methods for the detection of oxidative stress, a number of novel isoindoline nitroxides were synthesised for their potential application as small-molecule antioxidants. These compounds incorporated known pharmacophores into the isoindoline-nitroxide structure in an attempt to increase their efficacy in biological systems. A primary and a secondary amine nitroxide were synthesised which incorporated the phenethylamine backbone of the sympathomimetic amine class of drugs. Initial assessment of the novel primary amine derivative indicated a protective effect comparable to that of 5-carboxy-1,1,3,3- tetramethylisoindolin-2-yloxyl. Methoxy-substituted nitroxides were also synthesised as potential antioxidants for their structural similarity to some amphetamine type stimulants. A copper-catalysed methodology provided access to both the mono- and di-substituted methoxy-nitroxides. Deprotection of the ethers in these compounds using boron tribromide successfully produced a phenolnitroxide, however the catechol moiety in the disubstituted derivative appeared to undergo reaction with the nitroxide to produce quinone-like degradation products. A novel fluoran-nitroxide was also synthesised from the methoxy-substituted nitroxide, providing a pH-sensitive spin probe. An amino-acid precursor containing a nitroxide moiety was also synthesised for its application as a dual-action antioxidant. N-Acetyl protection of the nitroxide radical was necessary prior to the Erlenmeyer reaction with N-acetyl glycine. Hydrolysis and reduction of the azlactone intermediate produced a novel amino acid precursor with significant potential as an effective antioxidant.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A profluorescent nitroxide was used to evaluate the oxidative potential of pollution derived from a compression ignition engine fuelled with biodiesel. The reaction products responsible for the observed fluorescence increase when a DMSO solution of nitroxide was exposed to biodiesel exhaust were determined by using HPLC/MS. The main fluorescent species was identified as a methanesulfonamide adduct arising from the reaction of the nitroxide with DMSO-derived sulfoxyl radicals.
Resumo:
Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.
Resumo:
Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which NO.⋅⋅⋅I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems...
Resumo:
A series of new spin-labeled porphyrin containing isoindoline nitroxide moieties were synthesized and characterized as potential free radical fluorescence sensors. Fluorescence-suppression was observed in the free-base monoradical porphyrins, whilst the free-base biradical porphyrins exhibited highly suppressed fluorescence about three times greater than the monoradical porphyrins. The observed fluorescence-suppression was attributed to enhanced intersystem crossing resulting from electronexchange between the doublet nitroxide and the excited porphyrin fluorophore. Notably, fluorescencesuppression was not as strong in the related metalated porphyrins, possibly due to insufficient spin coupling between the nitroxide and the porphyrin. Continuous wave EPR spectroscopy of the diradical porphyrins in fluid solution suggests that the nitroxyl-nitroxyl interspin distance is long enough and tumbling is fast enough not to detect dipolar coupling.